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Abstract
The Budget Limited Coreness Maximization (BLCM) problem aims

to enhance average user engagement by activating a limited number

of connections, i.e., inserting up to𝑏 edges to maximize the coreness

gain of all vertices in a graph. Due to the cascading feature, we

prove the BLCM is NP-hard, APX-hard, and not submodular, mean-

ing greedy sequential edge insertion fails to deliver satisfactory

results. As a result, solving BLCM requires combinatorial edge in-

sertion and must face the combinatorial exploration difficulty. This

paper proposes the first effective and polynomial-time approach

to BLCM. It embeds local combinatorial optimization into global

greedy search to boost the benefits of combinatorial optimization

while restricting its complexity. Specifically, we propose efficient

methods to evaluate the cascaded coreness improvements of two lo-

cal combinatorial strategies, i.e., when a leader or a group of nodes

increase their coreness values via local edge insertion. Note that

the key difficulty lies in evaluating the cascading effects. Based on

these, we propose three efficient combinatorial edge insertion strate-

gies: (1) Leader-Centric Greedy Insertion (LCGI), (2) Group-Centric

Greedy Insertion (GCGI), and (3) a Leader-Group Balance (LGB)

insertion. LCGI greedily finds the most influential leader that can

produce the highest coreness gain together with its followers. GCGI

finds the most influential group that can promote the most coreness

gain. LGB combines the two strategies to select edge combinations

adaptively. We prove the low complexity of LCGI, GCGI and LGB.

Experiments conducted on 13 real-world datasets highlight their

practical utility and superiority over existing approaches.
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1 Introduction
User engagement in social networks is a key indicator that reflects

user involvement level in the community. How to increase user

engagement in a social network using a limited amount of budget

is a crucial problem. The 𝑘-core model extracts subgraphs in which

vertices have degrees of at least 𝑘 . It can extract high engagement

users[25, 29]. This paper considers the coreness value of a vertex

as an indicator of the user’s engagement in the social network [21].

Here the coreness of a vertex extends the 𝑘-core concept, which is

the largest 𝑘 value among the 𝑘-cores that cover the vertex. A case

study on the Gowalla [19] dataset is illustrated in Figure 1, which

shows the average user check-ins versus the coreness values of the

user (vertex). It is evident that the coreness value exhibits a strong

positive correlation with the user engagement.
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Figure 1: Vertex coreness vs. User checkins on Gowalla.

Activating connections, i.e., inserting edges into the network

is the most natural way to improve the vertex coreness. But edge

insertion generally requires some costly edge activation operations,

meaning it is necessary to consider the cost. Therefore, Budget
Limited Coreness Maximization problem (BLCM) is important.
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It aims to insert at most 𝑏 edges into the network to maximize the

sum coreness improvements of all the vertices. Note that this BLCM

problem is different from the traditional 𝑘-core Maximization (KM)

problem [8, 30, 36, 37], which only focuses on improving the size of

𝑘-core for a specific 𝑘 . The BLCM problem is also different from the

Anchor Coreness (AC) problem proposed by Linghu et al. [21]. The

“anchor" concept in AC raises the vertex’s degree to positive infinity

without actually inserting edges, which is theoretically interesting

but is hard to realize in practice.

We first prove that the BLCM problem is NP-hard, APX-hard, and

that the coreness gain function (the sum of coreness improvements

across all vertices) is not submodular. This implies that greedy

sequential edge insertion cannot achieve satisfactory results. To

address this, we need to explore combinatorial edge insertion, but

faces the difficulty of combinatorial explosion. Another difficulty is

that a vertex coreness improvement may trigger cascading effect

of neighbors’ coreness improvements. Therefore, we must on one

hand efficiently evaluate each combinatorial insertion, and on the

other hand narrow down the search space.

This paper presents the first efficient and effective approach to

the BLCM problem. It embeds the local combinatorial optimiza-

tion into the global greedy search to explore the combinatorial

insertion’s benefits while restricting its complexity. In particular,

we firstly focus on two practical local strategies: (1) increasing a

leader’s coreness by adding edges, and (2) enhancing a local group’s

coreness through edge insertion. Both strategies trigger a ripple

effect of coreness improvements among the neighboring nodes. We

present efficient methods for estimating the potential coreness gain

from these cascading effects. For the leader augmenting case, we

propose identifying "upstair paths" between the leader and follow-

ers to estimate the leader’s impact score. For the group augmenting

case, we characterize the upstair paths to efficiently estimate the

group’s impact score.

Based on efficient evaluation of the local combinatorial strate-

gies, the optimized local operations are used as atoms in global

greedy search. We firstly propose a Leader-Centric Greedy Inser-

tion (LCGI) strategy, which greedily selects the most influential

leader and inserts the corresponding set of edges in each round un-

til the budget is used up. Then, we further propose a Group-Centric

Greedy Insertion (GCGI) strategy, which greedily selects the most

influential group in each round. We propose group reduction to

filter out the poor-performing vertices in the group, followed by

group expansion, where the external well-performing vertices are

expanded. At last, we present a Leader-Group Balanced Algorithm

(LGB), which chooses LCGI and GCGI adaptively by comparing

their scores during greedy selection.

We prove that LCGI, GCGI and LGB have low complexity, i.e.,

the complexity of LCGI is 𝑂 (𝑏𝑚𝑛), while the complexity of the

latter two is upper bounded by 𝑂 (𝑏𝑘𝑚𝑎𝑥𝑚𝑛), where 𝑘𝑚𝑎𝑥 is the

maximum coreness value of vertices. Since existing methods cannot

directly solve the BLCM problem, we compare with other heuristic

algorithms and extend the edge 𝑘-core algorithm (EKC) [36] to

solve BLCM. Experiments are conducted on 13 datasets and the

results show that: 1) our proposed algorithms are more effective in

improving the coreness than other heuristic algorithms; 2) the LGB

algorithm has a significant improvement in efficiency while main-

taining a good coreness gain compared with the Exact algorithm

and the EKC algorithm; 3) the BLCM method has more coreness

gain than the vertex-oriented algorithm (VEK) [37] and fast core

maximization algorithm (FASTCM+) [30] which are traditional 𝑘-

core maximization algorithms, and the improvement of coreness

value is more diverse.

2 Problem Definition and Hardness Analysis
2.1 Problem Definition
An undirected and unweighted graph is denoted as 𝐺 = (𝑉 , 𝐸),
where 𝑛 = |𝑉 | represents the number of vertices, and𝑚 = |𝐸 | rep-
resents the number of edges. The neighbors of 𝑣 in 𝐺 are defined

as 𝑛𝑏𝑟 (𝑣,𝐺), and the degree of vertex 𝑣 is denoted as 𝑑𝑒𝑔(𝑣,𝐺).
When the context is clear, we simply use 𝑛𝑏𝑟 (𝑣) and 𝑑𝑒𝑔(𝑣) for
clarity. Given an integer 𝑘 (𝑘 ≥ 0), the 𝑘-core of 𝐺[26, 28], de-

noted by 𝐶𝑘 (𝐺), is the maximal subgraph of 𝐺 , such that ∀𝑣 ∈
𝐶𝑘 (𝐺), 𝑑𝑒𝑔(𝑣,𝐶𝑘 ) ≥ 𝑘 . The coreness value of a vertex 𝑣 ∈ 𝑉 (𝐺),
denoted by 𝑐𝑜𝑟𝑒 (𝑣,𝐺), is the largest 𝑘 such that 𝑣 is in the 𝑘-core,

i.e., 𝑐𝑜𝑟𝑒 (𝑣,𝐺) =𝑚𝑎𝑥𝑣∈𝐶𝑘 (𝐺 ) {𝑘}.
When the context is clear, we simply use 𝑐𝑜𝑟𝑒 (𝑣) as the coreness

value of 𝑣 . Through core decomposition [6], the initial coreness

of each vertex can be determined, and this process can be accom-

plished in 𝑂 (𝑚)[3]. Given a graph 𝐺 = (𝑉 , 𝐸) and an edge set

𝐷 = {(𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∉ 𝐸}, the coreness gain of𝐺 by insert-

ing 𝐷 , denoted by 𝑔(𝐷,𝐺), is the total increment of coreness for

vertices in𝑉 (𝐺), i.e.,𝑔(𝐷,𝐺) = ∑
𝑢∈𝑉 (𝐺 ) (𝑐𝑜𝑟𝑒 (𝑢,𝐺∗)−𝑐𝑜𝑟𝑒 (𝑢,𝐺)),

where 𝐺∗ is the graph after adding the edge set 𝐷 .

Problem Statement. Given a graph𝐺 = (𝑉 , 𝐸) and a budget 𝑏 ≥ 1,

the budget limited coreness maximization (BLCM) problem aims to

find a set 𝐷 = {(𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∉ 𝐸} and |𝐷 | ≤ 𝑏 such that

the coreness gain 𝑔(𝐷,𝐺) is maximized, i.e.,

𝐷∗ = argmax

|𝐷 | ≤𝑏

∑︁
𝑢∈𝑉 (𝐺 )

(𝑐𝑜𝑟𝑒 (𝑢,𝐺∗) − 𝑐𝑜𝑟𝑒 (𝑢,𝐺)) (1)

2.2 Hardness Analysis
Theorem 2.1. The BLCM problem is NP-hard.

We prove by employing a polynomial reduction from the Maxi-

mum Coverage (MC) problem [16] and the rest of the proof can be

found in Appendix A.

Theorem 2.2. The BLCM problem is APX-hard, i.e., for any 𝜖 > 0,
the BLCM problem cannot be approximated in polynomial time within
a ratio of (1 − 1/𝑒 + 𝜖), unless P=NP.

We also prove by a polynomial reduction from the MC [16] and

the proof is in Appendix A.

Theorem 2.3. The function 𝑔(.,𝐺) of coreness gain is not submod-
ular.

For being NP-hard, APX-hard and not sub-modular, sequential

greedy edge insertion cannot provide satisfactory performance to

the BLCMproblem. It is necessary to explore the combinatorial edge

insertion. Combinatorial insertion of 𝑏 edges into 𝑛2 −𝑚 possible

positions has obviously 𝐶𝑏
𝑛2−𝑚 complexity, which is prohibitive to

explore. Another difficulty is that the coreness improvement has a

cascading effect, i.e., a vertex’s coreness improvement may trigger

the coreness improvement of neighbors and further neighbors.
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Seeing the difficulties, this paper pursues low complexity poly-

nomial time while effective algorithms for the BLCM problem. The

idea is to combine the advantages of local combinatorial search

with the global greedy search. To efficiently evaluate the coreness

gain of local combinatorial edge insertion operations despite the

cascading effect, we focus on two kinds of local combinatorial edge

insertion strategies, i.e., adding edges to improve the coreness of

a leading vertex, and adding edges to improve the coreness of a

group of vertices. We first present methods to efficiently evaluate

the coreness gains of these two local combinatorial edge insertion

strategies to tailor the cascading effects.

3 Gain Evaluation of Local Strategies
We consider two local combinatorial edge insertion strategies. The

key is how to efficiently evaluate the coreness gain in each strategy

considering the cascading effect.

3.1 Leader-Follower Cascading Effect Analysis
We firstly consider the cascading effect that can be triggered by

one node, which is called a leader-follower strategy. We denote

𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 as leading 𝑐𝑜𝑟𝑒 (𝑥) to 𝑘 , where 𝑘 maybe {𝑐𝑜𝑟𝑒 (𝑥) +
1, 𝑐𝑜𝑟𝑒 (𝑥) +2, ..., 𝑘𝑚𝑎𝑥 } and 𝑘𝑚𝑎𝑥 is the maximum coreness value of

all vertices in 𝐺 . We call the process of 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 as leading 𝑥
to 𝑘-core, and 𝑥 is the leader. The vertices whose coreness increase
accompanying with 𝑥 are called followers, denoted as 𝐹 (𝑥, 𝑘). Then,
the leader and followers form a leader-follower structure. The edge
insertion scheme for 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 is to insert edges between 𝑥

and disconnected vertices in𝑘-core until 𝑥 is promoted to the𝑘-core.

We evaluate benefit/cost ratio considering all cascadingly triggered

followers by inserting edges to lead 𝑥 to 𝑘-core.

3.1.1 Leader Impact Score. Regarding cost, we denote 𝑐𝑜𝑠𝑡 (𝑥, 𝑘) as
the number of inserted edges for 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 . As for the benefit, it

comes from the coreness gain of the leader and the followers. The

former is equal to 𝑘−𝑐𝑜𝑟𝑒 (𝑥), while the latter is equal to the number

of elements in 𝐹 (𝑥, 𝑘), i.e., |𝐹 (𝑥, 𝑘) |. By leading 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 , any

vertex 𝑢 ∈ 𝑉 (𝐺) \ 𝑥 can increase its coreness by at most 1, which

is proved in Lemma A.1. So the gain is |𝐹 (𝑥, 𝑘) | + 𝑘 − 𝑐𝑜𝑟𝑒 (𝑥). The
𝑐𝑜𝑠𝑡 (𝑥, 𝑘) can be calculated by:

𝑐𝑜𝑠𝑡 (𝑥, 𝑘) = 𝑘 − |𝑛𝑏𝑟 (𝑥,𝐺) ∩𝐶𝑘 | − |𝑛𝑏𝑟 (𝑥,𝐺) ∩ 𝐹𝑘−1 (𝑥, 𝑘) | (2)

where 𝐹𝑘−1 (𝑥, 𝑘) indicates the vertices whose coreness is greater
than or equal to 𝑘 − 1 among the followers of 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 . If

we want to lead 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 , at least 𝑘 edges supported from

𝑘-core are required. |𝑛𝑏𝑟 (𝑥,𝐺) ∩𝐶𝑘 | is the existing support, and

|𝑛𝑏𝑟 (𝑥,𝐺) ∩ 𝐹𝑘−1 (𝑥, 𝑘) | is the followers to be increased to the 𝑘-

core. We select vertices that are not adjacent to 𝑥 from 𝑘-core

and connect them to 𝑥 . This gets the detailed combinatorial edge

insertion scheme to lead 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 . Then, the impact score of

leading 𝑥 to 𝑘 can be calculated as:

𝐼𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑘) = |𝐹 (𝑥, 𝑘) | + 𝑘 − 𝑐𝑜𝑟𝑒 (𝑥)
𝑐𝑜𝑠𝑡 (𝑥, 𝑘) (3)

3.1.2 Leader Followers. The key to calculating 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑘) is to cal-
culate |𝐹 (𝑥, 𝑘) |. We present the following theorem which can avoid

repeated graph traversal for calculating 𝐹 (𝑥, 𝑘). We denote 𝐼 (𝑥, +∞)
as the followers after setting 𝑑𝑒𝑔(𝑥) = +∞ without adding edges,

i.e., anchoring 𝑥 , and 𝐼𝑘 (𝑥, +∞) = {𝑣 |𝑣 ∈ 𝐼 (𝑥, +∞)∧𝑐𝑜𝑟𝑒 (𝑣,𝐺) ≥ 𝑘},
i.e., the followers after anchoring 𝑥 with original coreness not

smaller than 𝑘 . We then prove:

Theorem 3.1. For a given graph 𝐺 , we have 𝐹 (𝑥, 𝑘) = 𝐼 (𝑥, +∞)\
𝐼𝑘 (𝑥, +∞) for ∀𝑥 ∈ 𝑉 (𝐺).

Please see detailed proof in Appendix A. According to Theorem

3.1, our focus narrows to compute 𝐼 (𝑥, +∞). But in order to calculate
the final 𝐹 (𝑥, 𝑘), we need to calculate the value of |𝐼 (𝑥, +∞)| and
the detail elements of 𝐼 (𝑥, +∞) to calculate 𝐼𝑘 (𝑥, +∞). To efficiently

calculate 𝐼 (𝑥, +∞), we find that the vertices belonging to 𝐼 (𝑥, +∞)
must form a “stair" structure with 𝑥 . Therefore, we define and

calculate this “stair" structure by partitioning the graph into shells

to calculate the layer structure and the upstair path.

Definition 3.2. Given a graph 𝐺 , the 𝑘-shell, denoted by 𝐻𝑘 (𝐺),
is the set of vertices whose coreness equal to 𝑘 , i.e., 𝐻𝑘 (𝐺) =

{𝑣 |𝑐𝑜𝑟𝑒 (𝑣,𝐺) = 𝑘}.

We divide the vertices in 𝑘-shell into different layers. We set the

vertex set of the 𝑗-th layer in 𝑘-shell as 𝐻
𝑗

𝑘
(𝐺), where 𝐻1

𝑘
(𝐺) =

{𝑣 |𝑑𝑒𝑔(𝑣,𝐶𝑘 (𝐺)) < 𝑘 + 1 ∧ 𝑣 ∈ 𝐶𝑘 (𝐺)} representing the set of

vertices in the𝑘-core whose degree is less than𝑘+1. The subsequent
𝑗-th layer is derived from the removal of the preceding 𝑗−1 layer. Let
𝐺1 = 𝐶

𝑘 (𝐺), and𝐺 𝑗 is the subgrpah induced from𝐶𝑘 (𝐺) \𝐻1

𝑘
(𝐺) \

𝐻2

𝑘
(𝐺)\. . .\𝐻 𝑗−1

𝑘
(𝐺), then𝐻 𝑗

𝑘
(𝐺) = {𝑣 |𝑑𝑒𝑔(𝑣,𝐺 𝑗 ) < 𝑘+1∧𝑣 ∈ 𝐺 𝑗 },

and the layer number 𝑙𝑎𝑦𝑒𝑟 (𝑣) for∀𝑣 ∈ 𝐻 𝑗

𝑘
(𝐺) equals 𝑗 . An example

can be find in Appendix C, Example C.2.

Based on the above analysis, we can traverse 𝑘 from 1 to 𝑘𝑚𝑎𝑥
to get the layer number 𝑙𝑎𝑦𝑒𝑟 (𝑣) for 𝑣 ∈ 𝑉 (𝐺). We call it the Layer
Decomposition Algorithm. The detailed algorithm pseudocode in

the rest of the paper can be found in Appendix B.

Definition 3.3 (Upstair Path). A path 𝑥 { 𝑣 is called an upstair

path in 𝐺 for 𝑣 ∈ 𝑉 (𝐺) if it satisfies the following two conditions:

(1) for every vertex 𝑦 on the path from 𝑥 to 𝑣 except 𝑥 , 𝑐𝑜𝑟𝑒 (𝑥) ≤
𝑐𝑜𝑟𝑒 (𝑦) = 𝑐𝑜𝑟𝑒 (𝑣); and (2) for every two consecutive vertices𝑢1 and
𝑢2 from 𝑥 to 𝑣 , it must satisfy (𝑙𝑎𝑦𝑒𝑟 (𝑢1) < 𝑙𝑎𝑦𝑒𝑟 (𝑢2) ∧ (𝑐𝑜𝑟𝑒 (𝑢1) =
𝑐𝑜𝑟𝑒 (𝑢2))) or (𝑐𝑜𝑟𝑒 (𝑢1) < 𝑐𝑜𝑟𝑒 (𝑢2)).

Theorem 3.4. If vertex 𝑣 ∈ 𝐼 (𝑥, +∞) , then there must be an
upstair path respect to 𝑥 , that is 𝑥 { 𝑣 in 𝐺 .

According to Theorem 3.4, only the vertex that can form an

upstair path with 𝑥 can become an element of 𝐼 (𝑥, +∞). We use

𝐶𝐹 (𝑥) = {𝑣 |∃ path 𝑥 { 𝑣} to represent the set of vertices that

are candidate followers of 𝐼 (𝑥, +∞). Consequently, we only need to

traverse the 𝐶𝐹 (𝑥) vertices to calculate 𝐼 (𝑥, +∞). And then we de-

termine the final followers by degree check, which we will describe

in Section 4.1.

3.2 Group Promotion Cascading Effect Analysis
We further investigate to promote coreness of a local group of

vertices and design group score to select the most influential group.

We hope to find the groups that can achieve a large increase in sum

coreness by inserting a small number of edges in the group.

We find a one-hop structure has above desired property. A ver-

tex may have enough neighbors which can support its coreness
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improvement, but some of its neighbors lack enough supports to

achieve high coreness, so the coreness values of the whole group

stay in low values. But only if we add edges among the lack-support

neigbhors, the overall group will improve their coreness values.

More importantly, such one-hop structure is efficient to identify.

We therefore propose to find such one-hop group-centric structure.

3.2.1 Group Candidates Selection. To rank the potential groups,

we need to identify the group and evaluate the potential core-

ness gain of the group. The initial step is to identify the central

vertex of the group. We firstly define 𝑐𝑜𝑟𝑒≥ (𝑢) as the set of 𝑢’s

neighbors whose 𝑐𝑜𝑟𝑒 (.) ≥ 𝑐𝑜𝑟𝑒 (𝑢). We designate 𝐺𝐶 (𝐺) as the
set of vertices that can become the center of the group, where

𝐺𝐶 (𝐺) = {𝑢 | |𝑐𝑜𝑟𝑒≥ (𝑢) | ≥ 𝑐𝑜𝑟𝑒 (𝑢) + 1}. Given that a vertex 𝑢

has a higher |𝑐𝑜𝑟𝑒≥ (𝑢) |, its failure to achieve (𝑐𝑜𝑟𝑒 (𝑢) + 1)-core is
likely due to insufficient degree support among 𝑢’s neighbors. So,

inserting edges among its one-hop neighbors may yield substantial

follower returns with relatively low costs.

By selecting a center 𝑢, the initial group G(𝑢) = {𝑢} ∪ {𝑣 |𝑣 ∈
𝑛𝑏𝑟 (𝑢)∧ 𝑐𝑜𝑟𝑒 (𝑣) = 𝑐𝑜𝑟𝑒 (𝑢)}. We can find a determined scheme

of combinatorial edge insertion in G to promote the coreness of

all vertices in G(𝑢) to 𝑐𝑜𝑟𝑒 (𝑢) + 1. For each 𝑣 in G(𝑢), we define
𝑟 (.) to represent the number of edges required for 𝑣 to upgrade to

(𝑐𝑜𝑟𝑒 (𝑢) +1)-core. The scheme to promote G(𝑢) is as follows: (1)
If G(𝑢) has 𝑣1, 𝑣2, (𝑣1, 𝑣2) ∉ 𝐸 (G(𝑢)) and 𝑟 (𝑣1) > 0, 𝑟 (𝑣2) > 0, then

connect (𝑣1, 𝑣2). (2) If case (1) doesn’t appear, but 𝑣 ∈ G(𝑢) has
𝑟 (𝑣) > 0, then connect 𝑣 to the unconnected vertices in (𝑐𝑜𝑟𝑒 (𝑢)+1)-
core with 𝑟 (𝑣) edges. It is clear that this process can promote G(𝑢)
and the number of inserted edges is defined as 𝐺𝑐𝑜𝑠𝑡 (G(𝑢)).

We denote𝐺𝑔𝑎𝑖𝑛(G) as the cascaded coreness gain by promoting

G. The group score 𝐺𝑆 (G) = 𝐺𝑔𝑎𝑖𝑛 (G)
𝐺𝑐𝑜𝑠𝑡 (G) . To calculate 𝐺𝑔𝑎𝑖𝑛(G(𝑢)),

we define 𝐹𝐺 (G(𝑢)) as the set of vertices whose coreness increases
after promoting G(𝑢), i.e., 𝑣 ∈ 𝐹𝐺 (G(𝑢)) satisfies 𝑐𝑜𝑟𝑒 (𝑣,𝐺 ′) >
𝑐𝑜𝑟𝑒 (𝑣,𝐺) and 𝐺 ′ represents the graph after promoting G(𝑢). We

define the improved coreness of 𝑣 as 𝑖𝑣 = 𝑐𝑜𝑟𝑒 (𝑣,𝐺 ′) − 𝑐𝑜𝑟𝑒 (𝑣,𝐺).
Note that 𝐹𝐺 (G(𝑢)) also includes the vertices in G(𝑢). Then, we
can obtain 𝐺𝑔𝑎𝑖𝑛(G) by accumulating the coreness increment of

each vertex in 𝐹𝐺 (G(𝑢)), i.e.,𝐺𝑔𝑎𝑖𝑛(G(𝑢)) = ∑
𝑣∈𝐹𝐺 (G(𝑢 ) ) 𝑖𝑣 . The

key is how to determine the followers.

Theorem 3.5. If a vertex 𝑣 ∈ 𝑉 (𝐺) is a follower after promoting
G(𝑢), then ∃𝑥 ∈ G(𝑢), such that 𝑥 { 𝑣 (upstair path).

Through theorem 3.5, the search range of the group’s followers

can be narrowed down to the vertices with upstair paths, which

simplifies the calculation process of 𝐺𝑔𝑎𝑖𝑛(G). Then, we use the
improved degree check to determine the final group followers,

which will be described in detail in the Section 4.2.

4 Greedy Selection of Local Stategies
Empowered by the efficient evaluation of the local combinatorial

strategies, we embed the local combinatorial edge insertion into

global greedy selection of local strategies to address BLCM both

effectively and efficiently. We in particular propose LCGI, GCGI,

and LGB three greedy algorithms for local strategy selection.

4.1 Leader-Centric Greedy Insertion (LCGI)
This subsection introduces the Leader-Centric Greedy Insertion

Algorithm (LCGI). We first focus on how to calculate 𝐼 (𝑥, +∞) to
get 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑘). Then, based on the 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑘), we greedily select

the most influential leaders until budget is used up.

4.1.1 Compute 𝐼 (𝑥, +∞). To calculate 𝐼 (𝑥, +∞), we first determine

the candidate vertex set to reduce the search range. Then, we judge

whether each candidate may have a coreness increase. To find candi-

date followers𝐶𝐹 (𝑥), we denote 𝑐𝑒𝑙> (𝑢) as the set of 𝑢’s neighbors
whose 𝑐𝑜𝑟𝑒 (.) = 𝑐𝑜𝑟𝑒 (𝑢) and 𝑙𝑎𝑦𝑒𝑟 (.) > 𝑙𝑎𝑦𝑒𝑟 (𝑢). Similarly, we

denote 𝑐𝑒𝑙≤ (𝑢) as the set of 𝑢’s neighbors whose 𝑐𝑜𝑟𝑒 (.) = 𝑐𝑜𝑟𝑒 (𝑢)
and 𝑙𝑎𝑦𝑒𝑟 (.) ≤ 𝑙𝑎𝑦𝑒𝑟 (𝑢). We utilize a minimum heap 𝐻 to store

the vertices in 𝐶𝐹 (𝑥) that require traversal. The key for vertex 𝑣 is

defined as (core(𝑣), layer(𝑣)) for sorting, with 𝑐𝑜𝑟𝑒 (.) as the first
keyword and 𝑙𝑎𝑦𝑒𝑟 (.) as the second keyword. We start from the

leader vertex 𝑥 and continue to expand the vertices that can form

an upsair path with 𝑥 and put them into the queue 𝐻 .

To further determine whether the vertices in 𝐶𝐹 (𝑥) belong to

𝐼 (𝑥, +∞), we define three statuses for the vertices: survived, unex-
plored, and discarded. The unexplored status indicates that the vertex
has not experienced the degree check. On the other hand, survived
signifies that the vertex has passed the degree check. Lastly, dis-
carded indicates that the vertex failed the degree check and will

not be traversed in subsequent steps. We set 𝑑+ (𝑣) as the degree
bound of a vertex 𝑣 ∈ 𝐶𝐹 (𝑥), which represents its maximum sup-

port at (𝑐𝑜𝑟𝑒 (𝑣) +1)-core. Survived vertices may potentially become

discarded later if their degree bound is insufficient.

Theorem 4.1. If a vertex 𝑢 ∈ 𝐶𝐹 (𝑥) satisfies 𝑑+ (𝑢) < 𝑐𝑜𝑟𝑒 (𝑢) + 1,
then 𝑢 ∉ 𝐼 (𝑥, +∞).

Degree Check. We use the degree check to check whether the

vertices in 𝐶𝐹 (𝑥) will be in the discarded state. We calculate

𝑑+ (𝑢) = 𝑑+𝑠 (𝑢) + 𝑑+𝑢 (𝑢) + 𝑑> (𝑢) (4)

where𝑑+𝑠 (𝑢) represents the number of survived neighbors satisfying
𝑐𝑜𝑟𝑒 (𝑣) = 𝑐𝑜𝑟𝑒 (𝑢); 𝑑+𝑢 (𝑢) represents the number of unexplored
neighbors belonging to {𝑐𝑒𝑙≤ (𝑢)∩𝐻 }∪𝑐𝑒𝑙> (𝑢); and 𝑑> (𝑢) denotes
the number of neighbors satisfying 𝑐𝑜𝑟𝑒 (𝑣) > 𝑐𝑜𝑟𝑒 (𝑢) or 𝑣 = 𝑥 .

According to Theorem 4.1, if 𝑑+ (𝑢) < 𝑐𝑜𝑟𝑒 (𝑢,𝐺) + 1, 𝑢 cannot

become a member of 𝐼 (𝑥, +∞) and is marked discarded, which leads

to a decrease in the degree bound of 𝑛𝑏𝑟 (𝑢), which may cause them

also to be discarded. This discarded state may have a cascading

effect and propagate to neighbors again. We summarize the above

process and propose the FindFollowers algorithm to calculate the

set of followers when the coreness of leader 𝑥 is raised to positive

infinity.

4.1.2 Leader-Centric Greedy Insertion Algorithm. Based on the cal-

culation of 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑥, 𝑘), the Leader-Centric Greedy Insertion Algo-

rithm (LCGI) is proposed as given in Algorithm 1. To reduce the

search range of 𝑘 , we set 𝐾𝑟𝑎𝑛𝑔𝑒 (𝑥) as the set of coreness of all
vertices in 𝑛𝑏𝑟 (𝑥) plus 1, representing the coreness values to which
the 𝑛𝑏𝑟 (𝑥) can be increased. We first calculate the 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘) for
each vertex 𝑣 ∈ 𝑉 (𝐺) and the corresponding 𝑘 ∈ 𝐾𝑟𝑎𝑛𝑔𝑒 (𝑣). Based
on the score, we select the leader with the best 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘) in each

round and insert the corresponding edges into 𝐺 according to the

local edge insertion strategy.
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Algorithm 1: LCGI (𝐺,𝑏)
Input :A graph𝐺 = (𝑉 , 𝐸 ) , a budget 𝑏
Output :𝐷 : the set of inserted edges

1 cost = 0, 𝐷 ← ∅;
2 while cost ≤ b do
3 Layer Decomposition(𝐺,𝑘𝑚𝑎𝑥 );

4 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 = 0, 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 = 0, 𝑒𝑝𝑜𝑐ℎ_𝐷 = ∅;
5 foreach 𝑣 ∈ 𝑉 (𝐺 ) do
6 𝐼 (𝑣, +∞) = 𝐹𝑖𝑛𝑑𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 (𝑣,𝐺 ) ;
7 foreach 𝑘 ∈ 𝐾𝑟𝑎𝑛𝑔𝑒 (𝑣) do
8 𝐹 (𝑣, 𝑘 ) = 𝐼 (𝑣, +∞) − 𝐼𝑘 (𝑣, +∞) ;
9 compute 𝑐𝑜𝑠𝑡 (𝑣, 𝑘 ) according to Equation 2;

10 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘 ) = 𝐹 (𝑣,𝑘 )+𝑘−𝑐𝑜𝑟𝑒 (𝑣)
𝑐𝑜𝑠𝑡 (𝑣,𝑘 ) ;

11 𝐷 (𝑣, 𝑘 ) = Randomly select 𝑐𝑜𝑠𝑡 (𝑣, 𝑘 ) vertices (not
adjacent to 𝑣) from 𝑘-core;

12 if 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘 ) > 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 then
13 if 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠𝑡 (𝑣, 𝑘 ) > 𝑏 then continue;

14 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 = 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘 ) ;
15 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡 (𝑣, 𝑘 ) , 𝑒𝑝𝑜𝑐ℎ_𝐷 = 𝐷 (𝑣, 𝑘 ) ;

16 𝑐𝑜𝑠𝑡+ = 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 , 𝐷 = 𝐷 ∪ 𝑒𝑝𝑜𝑐ℎ_𝐷 , update𝐺 ;

17 return D;

In Algorithm 1, in each round, we first calculates the layer de-

composition (Line 3). Then, we traverse all vertices to examine all

possible 𝑘 values and calculate the 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘) (Lines 5-11). We

sets 𝐷 (𝑣, 𝑘) to represent the connecting edges required from lead-

ing 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 . Simultaneously, if 𝐼𝑠𝑐𝑜𝑟𝑒 (𝑣, 𝑘) is higher than
the previous score (Line 12) and the 𝑐𝑜𝑠𝑡 (𝑣, 𝑘) is no more than the

remaining budget (Line 13), we record it as the current optimal

solution (Lines 14-15). Finally, we updates the current cost, and

inserts the corresponding edges combination (Line 16).

Theorem 4.2. The time complexity of Algorithm 1 is𝑂 (𝑏 ·𝑛 ·𝑚).
The proof of the time complexity can be found in Appendix A.

4.2 Group-Centric Greedy Insertion (GCGI)
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Figure 2: An Example of core decomposition. The number
besides each vertex indicates its coreness value, while the
dotted line indicates an edge connected to a vertex in 𝑘-core.

This subsection introduces the greedy algorithm based on group

cascading effect. We first perform GroupReduction and GroupEx-

pansion on the original group to obtain a more efficient group.

Then we calculate the group score 𝐺𝑆 (G) corresponding to each

promoted group and select the most influential group in each round.

4.2.1 Group Reduction. The purpose of GroupReduction is to elim-

inate the vertices with low contributions. For G(𝑣), we define 𝐾𝑅 =

𝑐𝑜𝑟𝑒 (𝑣) + 1. We denote 𝑔𝑐 (𝑢) = |{𝑤 |𝑤 ∈ 𝑛𝑏𝑟 (𝑢) ∧𝑤 ∈ G(𝑣)}| as
the contribution of vertex 𝑢 to the G(𝑣), and 𝑔𝑟 (𝑢) = 𝐾𝑅 − |𝑁𝑋 (𝑢) |
as the additional cost brought by vertex 𝑢, where 𝑋 denotes the

set of 𝑢’s neighbors and each neighbor 𝑤 satisfies 𝑤 ∈ G(𝑣) or
𝑐𝑜𝑟𝑒 (𝑤) ≥ 𝑐𝑜𝑟𝑒 (𝑢) + 1. Then, we define the value of vertex 𝑢 to

G(𝑣) as 𝑔𝑣 (𝑢) = 𝑔𝑐 (𝑢) − 𝑔𝑟 (𝑢).
𝑔𝑣 (𝑢) < 0 indicates that the contribution of vertex 𝑢 to G(𝑣) is

less than the cost it brings, so vertex 𝑢 should be removed from

G(𝑣). The removal of vertex 𝑢 will alter the 𝑔𝑐 (.) and 𝑔𝑟 (.) values
of 𝑛𝑏𝑟 (𝑢) in the group, and we subsequently need to determine

whether these neighbors should also be removed from the G(𝑣).
We finally summarize the above process into the GroupReduction
algorithm, which reduces G(𝑣) until ∀𝑢 ∈ G(𝑣), 𝑔𝑣 (𝑢) ≥ 0.

Example 4.3. In Figure 2, we calculate 𝑔𝑟 (11) = 6 − |{10}| = 5,

𝑔𝑐 (11) = |{10}| = 1, thus 𝑔𝑣 (11) = 𝑔𝑐 (11) −𝑔𝑟 (11) = −4. Therefore,
vertex 11 will be removed from G(10). And 𝑔𝑟 (10) and 𝑔𝑐 (10) are
also modified accordingly.

4.2.2 Group Expansion. Group Expansion aims to identify vertices

outside the G(𝑣) but making significant contributions to promote

G(𝑣). We define 𝐾𝐸 = 𝑐𝑜𝑟𝑒 (𝑣) + 1 and evaluate vertices within

one-hop of G(𝑣). We denote 𝑒𝑐 (𝑢) = |{𝑤 |𝑤 ∈ 𝑛𝑏𝑟 (𝑢) ∧𝑤 ∈ G(𝑣) ∧
𝑔𝑟 (𝑤) > 0}| as the contribution to the group, and 𝑒𝑟 (𝑢) = 𝐾𝐸 −
|𝑁𝑋 (𝑢) | (similar to𝑔𝑟 (𝑢)) as the additional required expenses. Then
we define the value of vertex 𝑢 to the group as 𝑒𝑣 (𝑢) = 𝑒𝑐 (𝑢) −
𝑒𝑟 (𝑢). 𝑒𝑣 (𝑢) ≥ 0 indicates that adding vertex 𝑢 can contribute to

the 𝐺𝑆 (G(𝑣)). Therefore, 𝑢 can be added to G(𝑣). If vertex 𝑢 is

added to G(𝑣), then 𝑤 ∈ 𝑛𝑏𝑟 (𝑢) outside the group will change

the 𝑒𝑣 (𝑤) and can be evaluated whether they should be added to

G(𝑣). We summarize the above process into the GroupExpansion
algorithm, which searches for vertices around G(𝑣) where 𝑒𝑣 (.) > 0

for expansion. A detailed example can be found in Appendix C,

Example C.3.

4.2.3 Group Score. According to the above two subsections, we

have obtained all groups. For each vertex in the group, they must

have one of 𝑒𝑟 (.) or 𝑔𝑟 (.), which we will uniformly record as 𝑟 (.)
same as Section 3.2.1. The𝐺𝑐𝑜𝑠𝑡 (G) in𝐺𝑆 (G) can be easily derived

from the 𝑟 (.) value and the rules of promotion, so the key is in how

to calculate𝐺𝑔𝑎𝑖𝑛(G). Further, according to the analysis in Section

3.2.1, we need to calculate 𝐹𝐺 (G(𝑢)).
Computing 𝐹𝐺 (G(𝑢)).To calculate 𝐹𝐺 (G(𝑢)), we define𝐶𝐹 (G(𝑢))
as the set of candidate followers. According to Theorem 3.5,𝐶𝐹 (G(𝑢))
is the set of vertices that can form an upstair path with G(𝑢).

Then, we search for the final followers and its coreness incre-

ment in 𝐶𝐹 (G(𝑢)). We set the priority queue 𝐻 and set the key to

(𝑐𝑜𝑟𝑒 (.), 𝑙𝑎𝑦𝑒𝑟 (.)). When searching for 𝐶𝐹 (G(𝑢)), we introduce a
hierarchical search, meaning that each hierarchy only explores the

vertices with same coreness. The vertices within the initial G(𝑢) are
enqueued into the queue𝐻 and then expanded to find𝐶𝐹 (𝐺 (𝑢)). To
evaluate whether the vertices in 𝐶𝐹 (G(𝑢)) will be added to 𝐹𝐺 (.),
we define multiple states for the vertices in 𝐶𝐹 (𝐺 (𝑢)). Different
from leader’s followers, there are cases where the vertex coreness
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increases to more than 1. Hence, vertices that pass the degree check

need to be re-enqueued when the coreness of the hierarchy search

increases. We add the reexplored status, indicating that it has passed

the degree check in the previous hierarchy but has yet to pass it

for the current hierarchy. And we save the survived, unexplored,
discarded status same as the LCGI. We initialize the array Survive(.)
to record the current increment in its coreness. Furthermore, note

that for the reexplored vertices, we default them to the 0-th layer

of the high-level 𝑘-core. This enables us to utilize the concept of

the upstair path to continue expanding the vertex in the high-level

𝑘-core.

Degree Check. To determine the vertex state in𝐶𝐹 (G(𝑢)), we im-

plement degree check. We denote 𝑐𝑜𝑟𝑒∗ (𝑣) = 𝑐𝑜𝑟𝑒 (𝑣) + 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑣)
as the coreness value 𝑣 may achieve after promoting G(𝑢). We

calculate:

𝑑+ (𝑣) = 𝑑+𝑠 (𝑣) + 𝑑+𝑢 (𝑣) + 𝑑+𝑟 (𝑣) + 𝑑> (𝑣) (5)

where 𝑑+𝑠 (𝑣) represents the number of survived neighbors𝑤 satis-

fying 𝑐𝑜𝑟𝑒∗ (𝑤) > 𝑐𝑜𝑟𝑒∗ (𝑣), 𝑑+𝑢 (𝑣) represents the number of unex-
plored neighbors 𝑤 satisfying (𝑐𝑜𝑟𝑒 (𝑤) = 𝑐𝑜𝑟𝑒∗ (𝑣) ∧ 𝑙𝑎𝑦𝑒𝑟 (𝑤) >
𝑙𝑎𝑦𝑒𝑟 (𝑣)) or 𝑤 ∈ 𝐻 , 𝑑+𝑟 (𝑣) represents the number of reexplored
neighbors 𝑤 satisfying 𝑐𝑜𝑟𝑒∗ (𝑤) = 𝑐𝑜𝑟𝑒∗ (𝑣) and 𝑑> (𝑣) denotes
the number of neighbors 𝑤 satisfying 𝑐𝑜𝑟𝑒 (𝑤) ≥ 𝑐𝑜𝑟𝑒∗ (𝑣) + 1 or
𝑤 ∈ G(𝑢).

Theorem 4.4. If a vertex 𝑣 ∈ 𝐶𝐹 (G(𝑢)) satisfies𝑑+ (𝑣) < 𝑐𝑜𝑟𝑒∗ (𝑣)
+1, then 𝑐𝑜𝑟𝑒 (𝑣,𝐺G(𝑢 ) ) ≤ 𝑐𝑜𝑟𝑒∗ (𝑣), where 𝐺G(𝑢 ) is the graph after
promoting G(𝑢).

According to Theorem 4.4, we traverse the vertices in𝐶𝐹 (G(𝑢))
and discard the vertices that can not pass the degree check, and

update the 𝑑+ (.) of their neighbors, and then judge again whether

the updated neighbors will be set as discarded. Otherwise, if vertex𝑢
passes the degree check, it is defined as the survived, and 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑢)
is increased, indicating that 𝑐𝑜𝑟𝑒 (𝑢) may be increased and 𝑢 will

continue to perform degree check as the hierarchy increases. Based

on the above analysis, we propose theGroupGain algorithm,which

calculates the total coreness gain of promoting G(𝑢).

Example 4.5. In Figure 2, initially, the vertices in G(10) are added
to 𝐻 . During the hierarchical traversal of 𝐻 , the 4-core is first

traversed. Vertex 2 is dequeued, and its neighbor vertex 1 (where

vertex 1 ∈ 𝑐𝑒𝑙> (2)) is enqueued. We calculate 𝑑+ (1) = 𝑑> (1) =
6 > 𝑐𝑜𝑟𝑒 (1) + 1 = 5. Consequently, vertex 1 is marked as survived,
and 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (1) = 1. Later, during the hierarchical traversal of the

5-core, vertex 1 is enqueued again, and its status is set to reexplored.
We recalculate 𝑑+ (1) = 𝑑> (1) = 6 > 𝑐𝑜𝑟𝑒 (1) + 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (1) + 1 = 6.

Therefore, 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (1) = 2, and it is marked as survived once more.

Finally, the coreness of vertex 1 is increased by 2.

4.2.4 GCGI Algorithm. The generation of the group and the cal-

culation of 𝐺𝑆 (.) have been described above. Based on 𝐺𝑆 (G), we
propose GCGI Algorithm for BLCM problem, as shown in Algo-

rithm 2. It focuses on the computation of 𝐺𝑆 and the selection of

the best group. Each part of the code has been explained earlier.

We detail the calculation process of the group cost in Lines 11-17,

where𝑄 is derived from the vertex set whose 𝑟 (𝑣) > 0 in G(𝑣). We

select the optimal group by comparing 𝐺𝑆 (.) and retain the edge

combinations that need to be inserted (Lines 18-21).

Algorithm 2: GCGI (𝐺 , 𝑏)
Input :A graph𝐺 = (𝑉 , 𝐸 ) , a budget 𝑏
Output :𝐷 : the set of inserted edges

1 cost = 0, 𝐷 ← ∅;
2 while cost ≤ b do
3 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 = 0, 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 = 0, 𝑒𝑝𝑜𝑐ℎ_𝐷 = ∅;
4 compute𝐺𝐶 (𝐺 ) ;
5 foreach 𝑣 ∈ 𝐺𝐶 (𝐺 ) do
6 𝐷 (G(𝑣) ) ← ∅,𝐺𝑐𝑜𝑠𝑡 = 0;

7 Initial G(𝑣) ;
8 GroupReduction(𝐺 , G(𝑣));
9 GroupExpansion(𝐺 , G(𝑣));

10 𝐺𝑔𝑎𝑖𝑛=GroupGain(𝐺 , G(𝑣));
11 𝑄 ← {𝑢 |𝑢 ∈ G ∧ 𝑟 (𝑢 ) > 0};
12 while ∃𝑥, 𝑦 ∈ 𝑄 ∧ (𝑥, 𝑦) ∉ 𝐸 (𝐺 ) do
13 Add (𝑥, 𝑦) into 𝐷 (G(𝑣) ) , Gcost++;
14 𝑟 (𝑥 ) = 𝑟 (𝑥 ) − 1,𝑟 (𝑦) = 𝑟 (𝑦) − 1;

15 foreach ∃𝑥 ∈ 𝑄 do
16 Gcost+ = 𝑟 (𝑥 ) , update 𝐷 (G(𝑣) ) ;

17 𝐺𝑆 (G(𝑣) ) = 𝐺𝑔𝑎𝑖𝑛

𝐺𝑐𝑜𝑠𝑡
;

18 if 𝐺𝑆 (G(𝑣) ) > 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 then
19 if 𝑐𝑜𝑠𝑡 + 𝑔𝑐𝑜𝑠𝑡 > 𝑏 then continue;

20 𝑒𝑝𝑜𝑐ℎ_𝑠𝑐𝑜𝑟𝑒 = 𝐺𝑆 (G(𝑣) ) ;
21 𝑒𝑝𝑜𝑐ℎ_𝐷 = 𝐷 (G(𝑣) ) , 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 = 𝐺𝑐𝑜𝑠𝑡 ;

22 𝑐𝑜𝑠𝑡+ = 𝑒𝑝𝑜𝑐ℎ_𝑐𝑜𝑠𝑡 , 𝐷 = 𝐷 ∪ 𝑒𝑝𝑜𝑐ℎ_𝐷 , update𝐺 ;

23 return D;

Theorem 4.6. The time complexity of GCGI is𝑂 (𝑏· 𝑘𝑚𝑎𝑥 ·𝑛·𝑚).

4.3 Leader-Group Balance Algorithm
We combine the LCGI Algorithm and the GCGI Algorithm to pro-

pose a Leader-Group Balance (LGB) algorithm. As shown in Algo-

rithm 3, in each round LGB uses LCGI and GCGI to calculate the

highest score 𝐿𝑆 and 𝐺𝑆 of the vertex and group respectively. If 𝐿𝑆

is higher, it uses Algorithm 1 to get the combinatorial edge insertion.

On the contrary, it uses Algorithm 2 to get the combinatorial edge

insertion. The time complexity of the LGB depends on Algorithm 1

and Algorithm 2.

Algorithm 3: LGB (𝐺 , 𝑏)

Input :A graph𝐺 = (𝑉 , 𝐸 ) , a budget 𝑏
Output :𝐷 : the set of inserted edges

1 cost = 0, 𝐷 ← ∅;
2 while cost ≤ b do
3 compute 𝐿𝑆 according to Lines 3-15 in Algorithm 1;

4 compute𝐺𝑆 according to Lines 3-22 in Algorithm 2;

5 if 𝐿𝑆 > 𝐺𝑆 then
6 update 𝐷,𝑐𝑜𝑠𝑡,𝐺 according to Algorithm 1;

7 else update 𝐷,𝑐𝑜𝑠𝑡,𝐺 according to Algorithm 2 ;

8 return D;

Theorem 4.7. The time complexity of LGB is 𝑂 (𝑏· 𝑘𝑚𝑎𝑥 · 𝑛·𝑚).
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Since LGB algorithm considers the optimal solution of two greedy

algorithms, it can bring higher coreness gain. Therefore LGB can

be used when higher effectiveness is required. Due to the change in

the greedy strategy, the running time is not the sum of the two al-

gorithms. In fact, LGB, which combines the two greedy algorithms,

will reduce the number of iterations, so the actual running time is

sometimes even better than LCGI and GCGI. We will conduct more

coreness gain and running time analysis in Section 5.

5 Experiments
Datasets. Experiments are conducted on 13 real-world large graphs,

which can be found in SNAP [19] or Network Repository [27]. The

statistics are shown in Table 1, sorted by increasing number of ver-

tices, where abbreviations are used for each dataset,𝑑𝑒𝑔 and𝑑𝑒𝑔𝑚𝑎𝑥
represent the average 𝑑𝑒𝑔(.) and the max 𝑑𝑒𝑔(.) respectively, and
𝑘𝑚𝑎𝑥 represents the max coreness among all 𝑣 ∈ 𝑉 (𝐺).

Table 1: Datasets

Dataset Abbr. 𝑛 = |𝑉 | 𝑚 = |𝐸 | 𝑑𝑒𝑔 𝑑𝑒𝑔𝑚𝑎𝑥 𝑘𝑚𝑎𝑥

twitter_copen TC 8,580 473,614 110 1,516 582

pkustk02 PK 10,800 410,400 76 155 71

Email-Enron EE 36,692 183,831 10.02 1,383 43

Facebook FB 63,731 817,035 25.64 1,098 52

Gowalla GW 196,591 950,327 9.67 14,730 51

DBLP DB 317,080 1,049,866 6.62 343 112

Amazon AZ 334,863 925,872 5.53 549 6

youtube YT 495,957 1,936,748 7.81 25,409 49

Google GG 875,713 4,322,051 9.87 6,332 44

lastfm LF 1,191,805 4,519,330 7.58 5,150 70

pokec PC 1,632,803 30,622,564 37.51 14,854 47

flixster FS 2,523,386 7,918,801 6.28 1,474 68

LiveJournal LJ 4,847,571 68,993,773 28.46 20,333 372

Settings. All algorithms are implemented in C++ and compiled by

g++ compiler at -O3 optimization level, and they are conducted

on a machine with Inter(R) Xeon(R) CPU E5-2667 v4@3.20GHz

processor and 256GB memory, with Ubuntu installed.

Algorithms. Since there is no algorithm that can directly solve

the BLCM problem, to demonstrate the efficiency of our algorithm,

we compare it with: (1) four heuristic algorithms; (2) EKC [36]

algorithm revised to solve BLCM; and (3) an exact algorithm to

explore edge insertion combinations. Additionally, we contrast

it with the SOTA algorithms specialized in 𝑘-core maximization

(KM) such as VEK [37] and FASTCM+ [30]. Detailed descriptions

of all algorithms are shown in Table 2. Due to lack of space, some

experiments are supplemented in Appendix E.

5.1 Effectiveness
We compare the effectiveness of the proposed algorithms with four

heuristic algorithms, the modified EKC algorithm, and the exact

algorithm in small graphs respectively.

1. Comparison with heuristic algorithms. We compare with

the heuristic algorithms on 13 datasets and the results are depicted

in Figure 3. It can be seen that the proposed LCGI, GCGI, and LGB

algorithms all achieve remarkably higher coreness gain improve-

ment than the four heuristic algorithms. LGB performs slightly

better than LCGI and GCGI for it switches between the two poli-

cies adatively. Simple degree-based edge selections perform even

worse than the random edge insertion in some datasets, showing

the BLCM problem’s non-intuitiveness.

Table 2: Description of Algorithms

Algorithm Description

Exact Enumerate all 𝑏 edge combinations from

( |𝑉 |
2

)
\ |𝐸 | and select the

optimal strategy.

Rand Randomly insert 𝑏 edges from

( |𝑉 |
2

)
\ |𝐸 | .

deg
Select the vertex with the highest 𝑑𝑒𝑔 (𝑢 ) and lead 𝑢 to 𝑘-core,

where 𝑘 is determined in the same way as Section 4.1.2 and the

same below.

deg-c Select the vertex with the highest 𝑑𝑒𝑔𝑐 (𝑢 ) = 𝑑𝑒𝑔 (𝑢 ) − 𝑐𝑜𝑟𝑒 (𝑢 )
and lead 𝑢 to 𝑘-core.

deg-s
Select the vertex with the highest 𝑑𝑒𝑔𝑠 (𝑢 ) = | {𝑣 |𝑣 ∈ 𝑛𝑏𝑟 (𝑢 ) ∧
(𝑐𝑜𝑟𝑒 (𝑣) > 𝑐𝑜𝑟𝑒 (𝑢 ) or 𝑐𝑜𝑟𝑒 (𝑢 ) = 𝑐𝑜𝑟𝑒 (𝑣) ∧ 𝑙𝑎𝑦𝑒𝑟 (𝑢 ) >

𝑙𝑎𝑦𝑒𝑟 (𝑣) ) } | and lead 𝑢 to 𝑘-core.

EKC A greedy edge-enumeration algorithm for 𝑘-core maximization

algorithm [36]. We extend it to solve the BLCM problem.

VEK A greedy vertex-enumeration algorithm for 𝑘-core maximization

algorithm [37].

FASTCM+ The state-of-the-art algorithm for 𝑘-core maximization algorithm

[30].

LCGI A greedy edge insertion strategy based on leader-followers struc-

ture in Algorithm 1.

GCGI A greedy edges insertion strategy based on group-centric structure

in Algorithm 2.

GCGI-R GCGI without GroupReduction.

GCGI-E GCGI without GroupExpansion.

GCGI-R-E GCGI without GroupReduction and Group Expansion.

LGB A combined greedy edge insertion strategy to balance LCGI and

GCGI in Algorithm 3.

TC PK EE FB GW DB AZ YT GG LF PC FS LJ
101

102

103

104

Co
re

ne
ss

 G
ai

n

Rand deg deg-c deg-s LCGI GCGI LGB

Figure 3: Coreness Gain from Different Heuristics, 𝑏=50.

1 2 3 4
b

0

5

10

15

20

Av
g 

Co
re

ne
ss

 G
ai

n deg-s
LGB
Exact

(a) Gowalla

1 2 3 4
b

0

5

10

15

20

Av
g 

Co
re

ne
ss

 G
ai

n deg-s
LGB
Exact

(b) Facebook

Figure 4: LGB vs. Exact and deg-s on Coreness Gain.

2. Comparison with Exact algorithm. Due to the complexity of

combinatorial search, Exact algorithm is only tested on the Gowalla

and Facebook datasets after vertex sampling. Specifically, we ran-

domly select a vertex and iteratively add its neighbors until the

graph contains 50 vertices. For each dataset, we take 10 small graphs

and calculate the average of the final results. We additionally select

the deg-s algorithm, which performs better among the heuristic al-

gorithms, for comparison. The experimental outcomes are shown in

Figure 4. Comparing with the coreness gain of the Exact algorithm,

LGB still provides a substantial coreness gain, and the efficiency

comparison will be shown in Section 5.2. In addition, it can be seen

that the coreness gain of the deg-s algorithm is far behind that of
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the Exact algorithm and is still much less than LGB, which further

illustrates the effectiveness of our algorithm.
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Figure 5: LGB vs. EKC on Coreness Gain.

3. Comparison with the extended EKC algorithm. To adapt the
EKC algorithm for the BLCM problem, we extend its edge traversal

range to

( |𝑉 |
2

)
\ |𝐸 |, so it can carry out the corness maximization

task. However, from the comparison results shown in Figure 5, we

can see that due to EKC’s inability to explore the benefits of edge

combinations, the coreness gain achieved by the EKC algorithm on

twitter_copen and pkustk02 is less than LGB, even failing to yield

any coreness gain on pkustk02.

5.2 Efficiency
In efficiency comparison, we conduct experiments using four algo-

rithms: LCGI, GCGI, LGB and extended EKC. We set 𝑏 to 50.
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Figure 6: Time Cost from Different Algorithms, 𝑏=50.

Overall Performance. The experimental results are shown in

Figure 6. The EKC algorithm cannot be fully displayed because

it takes too long to run (> 10
5𝑠) on bigger datasets after FB or

runs out of memory. As the graph size increases, the time-costs

of the three proposed algorithms show a slow increasing trend.

GCGI usually takes less time. Though LGB usually takes a longer

time, it does not merely sum up the time costs of LCGI and GCGI.

This is primarily because the fusion of the two greedy strategies

results in alterations of the running rounds. In addition, the time

of the extended EKC algorithm increases quickly as the data scale

increases. Considering the corness gains achieved by our proposed

algorithms, they achieve impressive corness gain improvements

while using affordable time costs.

Comparisonwith the Exact and the extended EKCalgorithms.
The experimental settings for comparing with Exact and EKC Algo-

rithms are the same as the previous comparison of coreness gain,

and the final time cost is shown in Table 3. LGB has a remarkable im-

provement in time compared to Exact. The Exact algorithm requires

huge time costs even on small-scale graphs and small 𝑏. Therefore,

although LGB loses a certain degree of coreness gain, it is highly

Table 3: Comparison of Time Cost (s) between LGB, Exact,
and EKC on Different Datasets

b

Gowalla Facebook

b

pkustk02 Email-Enron

Exact LGB Exact LGB EKC LGB EKC LGB

1 0.001 0.001 0.002 0.001 10 1926.4 116.2 9487.4 56.2
2 0.360 0.001 0.711 0.001 20 3513.1 156.7 17962.1 127.7
3 104.74 0.001 208.01 0.001 30 5397.4 156.9 26691.5 159.1
4 28053.6 0.001 57627.7 0.001 40 7145.6 239.6 31843.5 230.6
5 >100000 0.001 >100000 0.001 50 8619.0 242.3 40521.3 258.9

efficient in larger-scale graphs, so the reduction in coreness gain is

acceptable.

In comparison with extended EKC, the LGB algorithm has a

significant improvement in time. As the graph size increases fur-

ther, such as from pkustk02 to the Email-Enron dataset, the time

complexity of EKC increases exponentially, which makes it unable

to handle large-scale datasets.

5.3 Comparison with other KM algorithms
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Figure 7: Coreness Gain on different 𝑘 .

VEK and FASTCM+ are efficient algorithms used to address the

KM problem. We compare the sum corness gains achieved by these

KM algorithms and the LGB algorithm. We focus on the Facebook

and Gowalla datasets with 𝑏 = 50, and 𝑘 varying from 5 to 50.

The results are illustrated in Figure 7. The experiments reveal that

the effectiveness of VEK and FASTCM+ varies significantly when

different values of𝑘 are set. However, the coreness gain they achieve

is both less than the LGB algorithm. Additionally, compared to the

KM problem, which needs to manually specify 𝑘 , the LGB algorithm

eliminates this requirement, reducing the manual effort involved.

6 Conclusions
From the perspective of enhancing social network average user

engagement through combinatorial edge insertions, this paper in-

troduces the BLCM problem, proves the problem is NP-hard and

APX-hard. We further prove the coreness gain function is not sub-

modular. We propose efficient methods to evaluate the cascaded

coreness improvements of two local combinatorial strategies and

provide solutions to the key problem of evaluating the cascading

effects. Based on this, we then propose three efficient combinato-

rial edge insertion strategies: LCGI, GCGI and LGB. We prove the

polynomial time complexity of LCGI, GCGI and LGB. Experiments

conducted on 13 real-world datasets highlight their practical utility,

efficiency and effectiveness over existing approaches.
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A PROOFS OF THEOREMS
Proof of Theorem 2.1:We prove that the BLCM problem is NP-

hard by employing a polynomial reduction from the Maximum

Coverage (MC) problem [16] to our BLCM problem. Consider an

instance of the decision problem of the MC problem. Given 𝐵, a

budget 𝑏, a set of 𝑑 elements {𝑒1, ..., 𝑒𝑑 }, and 𝑐 subsets of {𝑒1, ..., 𝑒𝑑 },
𝑇1, ...,𝑇𝑐 , the decision problem of MC problem asks whether there

exists 𝑏 subsets such that |⋃
1≤ 𝑗≤𝑏 𝑇𝑖 𝑗 | ≥ 𝐵. Now we construct a

𝑻𝟏: {𝒆𝟏, 𝒆𝟑} 𝑻𝟐: {𝒆𝟏, 𝒆𝟐, 𝒆𝟑} 𝑻𝟑: {𝒆𝟑, 𝒆𝟒}
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Figure 8: Construction Example for Hardness Proofs.

corresponding instance of the BLCM problem on a graph 𝐺 . The

graph 𝐺 contains three parts:𝑀 , 𝑁 , and 𝑄 . The part𝑀 contains 𝑐

set of vertices where each set has 𝑑 +3 vertices, i.e.,𝑀 =
⋃

1≤𝑖≤𝑐 𝑀𝑖
where 𝑀𝑖 =

⋃
1≤ 𝑗≤𝑑+3 𝑢

𝑖
𝑗
. For every 𝑀𝑖 in 𝑀 , we connect 𝑢𝑖

𝑗
and

𝑢𝑖
𝑗+1 by an edge for every 𝑗 ∈ [1, 𝑑 + 2], and we also connect 𝑢𝑖

1
and

𝑢𝑖
𝑑+3. The part𝑁 contains𝑑 vertices, i.e.,𝑁 =

⋃
1≤𝑖≤𝑑 𝑣𝑖 . The part𝑄

is a (𝑐 +1)-clique where every two vertices of the (𝑐 +1) vertices are
adjacent. For every 𝑖 and 𝑗 , if 𝑒 𝑗 ∈ 𝑇𝑖 in the MC instance, we add an

edge between 𝑣 𝑗 and 𝑢
𝑖
𝑗
. In Figure 8, these edges are marked in bold.

For every 𝑀𝑖 , we add edges between every vertex in 𝑀𝑖 and the
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vertices in 𝑄 so that every vertex in𝑀𝑖\{𝑢𝑖𝑑+1, 𝑢
𝑖
𝑑+3} has degree 𝑐

and every vertex in {𝑢𝑖
𝑑+1, 𝑢

𝑖
𝑑+3} has degree 𝑐−1. We add 𝑐−1 edges

between 𝑣𝑖 and the vertices in 𝑄 for every 𝑖 ∈ [1, 𝑑]. The coreness
of each 𝑢𝑖

𝑗
∈ 𝑀𝑖 is 𝑐 − 1. Similarly, the coreness of each 𝑣 𝑗 ∈ 𝑁 is

also 𝑐 − 1. The coreness of every vertex in 𝑄 is 𝑐 . Figure 8 shows

a construction example from 3 sets and 4 elements. The decision

problem of the BLCM problem is whether there exists an edge set

𝐷 ⊆ 𝐸 (𝐾𝑛)\𝐸 (𝐺) with 𝑏 edges such that 𝑔(𝐷,𝐺) ≥ 𝑏 (𝑑 + 3) + 𝐵.
Now we prove that the decision problem of the MC problem has

a “yes" answer if and only if the decision problem of the Corness

Maximization problem has a “yes" answer.

Suppose there is a “yes" answer for the decision problem of

the MC problem, that is, there is a 𝑏 subsets, 𝑇𝑖1 , ...,𝑇𝑖𝑏 such that

{𝑒 𝑗1 , ..., 𝑒 𝑗𝐵 } ⊆ 𝑇𝑖1 ∪ 𝑇𝑖2 ∪ ... ∪ 𝑇𝑖𝑏 . We set 𝐷 = {(𝑢𝑖1
𝑑+1, 𝑢

𝑖1
𝑑+3) ,...,

(𝑢𝑖𝑏
𝑑+1, 𝑢

𝑖𝑏
𝑑+3)}. After adding 𝐷 to 𝐺 , the coreness of each vertex in

𝑀𝑖1 , ..., 𝑀𝑖𝑏 increases by one; the coreness of 𝑣 𝑗1 , ..., 𝑣 𝑗𝐵 increases

by one. Therefore, the coreness gain 𝑔(𝐷,𝐺) ≥ 𝑏 (𝑑 + 3) + 𝐵, i.e.,
the decision problem of the BLCM problem has a “yes" answer.

Suppose there is a “yes" answer for the decision problem of

the BLCM problem, that is, there is an edge set 𝐷 ⊆ 𝐸 (𝐾𝑛)\𝐸 (𝐺),
|𝐷 | = 𝑏, such that 𝑔(𝐷,𝐺) ≥ 𝑏 (𝑑 + 3) + 𝐵. In graph 𝐺 , the coreness

gain of adding any edge in 𝐸 (𝐾𝑛)\𝐸 (𝐺) is not greater than 𝑑 + 3 +
𝑚𝑖𝑛

1≤𝑖≤𝑏 |𝑇𝑖 |. To meet the condition that the total coreness gain

of adding the |𝐷 | edges is not less than 𝑏 (𝑑 + 3) + 𝐵, the coreness
gain of adding any edge in 𝐷 is not less than 𝑑 + 3 +𝑚𝑎𝑥

1≤𝑖≤𝑏 |𝑇𝑖 |.
Therefore, all edges in 𝐷 must be between 𝑢𝑖

𝑑+1 and 𝑢
𝑖
𝑑+3, i.e., 𝐷 =

{(𝑢𝑖1
𝑑+1, 𝑢

𝑖1
𝑑+3) ,..., (𝑢

𝑖𝑏
𝑑+1, 𝑢

𝑖𝑏
𝑑+3)}. We select𝑇𝑖1 , ...,𝑇𝑖𝑏 , and it is easy to

know |⋃
1≤ 𝑗≤𝑏 𝑇𝑖 𝑗 | ≥ 𝐵. Therefore, there is a 𝑏 subsets, 𝑇𝑖1 , ...,𝑇𝑖𝑏

such that {𝑒 𝑗1 , ..., 𝑒 𝑗𝐵 } ⊆ 𝑇𝑖1 ∪𝑇𝑖2 ∪ ...∪𝑇𝑖𝑏 , i.e., the decision problem
of the MC problem has a “yes" answer. Thus, the theorem is proved.

Proof of Theorem 2.2: We reduce from the MC problem using

a reduction similar to that in the proof of Theorem 2.1. For any

𝜖 > 0, the MC problem cannot be approximated in polynomial

time within a ratio of (1 − 1/𝑒 + 𝜖), unless P = NP [14]. Let 𝑘 be an

arbitrarily large constant. In the construction of 𝐺 , Q is a 𝑘-clique;

and every 𝑣𝑖 is attached by a loop of 𝑘 vertices where each vertex

is connected to Q by 𝑐 − 2 edges except 𝑣𝑖 . Let 𝛾 > 1 − 1/𝑒 , if there
is a solution with 𝛾-approximation on the coreness gain for the

BLCM problem, there will be a 𝜆-approximate solution on optimal

element number for the MC problem, where 𝜆 = 𝛾 + (𝛾−1)×𝑏 (𝑑+3)
𝑘×𝑓

and 𝑓 is the coreness gain of the BLCM problem. Thus, the theorem

is proved. The BLCM problem is APX-hard.

Proof of Theorem 2.3: If 𝑔(.,𝐺) is submodular, for any graph

𝐺 and two arbitrary edge sets 𝐴 and 𝐵 of 𝐺 , it must satisfy that

𝑔(𝐴,𝐺)+𝑔(𝐵,𝐺) ≥ 𝑔(𝐴∪𝐵,𝐺)+𝑔(𝐴∩𝐵,𝐺). But for a graphwith𝐺 =

(𝑉 , 𝐸), where 𝑉 = {1, 2, 3, 4} and 𝐸 = {(1, 2), (2, 3), (3, 4), (4, 1)}, if
we set 𝐴 = {(1, 3)}, 𝐵 = {(2, 4)}, then 𝑔(𝐴,𝐺) + 𝑔(𝐵,𝐺) = 0 <

𝑔(𝐴 ∪ 𝐵,𝐺) + 𝑔(𝐴 ∩ 𝐵,𝐺) = 4. Therefore 𝑔(.,𝐺) is not submodular.

Lemma A.1. By leading 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 , any vertex 𝑢 ∈ 𝑉 (𝐺) \ 𝑥
can increase its coreness by at most 1,

Proof of Lemma A.1:We prove it by contradiction. Suppose there

is a vertex 𝑢0 ∈ 𝑉 (𝐺) \ 𝑥 with coreness increasing from 𝑘′ to 𝑘∗

after leading 𝑥 to 𝑘-core and 𝑘∗ − 𝑘′ > 1. Then after leading 𝑥 to

𝑘-core,𝑢0 must be contained in𝑄 = 𝐶𝑘
∗ (𝐺 +𝐸𝑥,𝑘 ) where𝐺 +𝐸𝑥,𝑘 =

(𝑉 (𝐺), 𝐸 (𝐺) ∪ 𝐸𝑥,𝑘 ) and 𝐸𝑥,𝑘 is a set of the corresponding edges

for leading 𝑥 to 𝑘-core. For ∀𝑣 ∈ 𝑄 , it must have 𝑑𝑒𝑔(𝑣,𝑄) ≥ 𝑘∗
and if we delete 𝑥 and 𝐸𝑥,𝑘 , we can get 𝑑𝑒𝑔(𝑣,𝑄 − 𝐸𝑥,𝑘 − {𝑥}) ≥
𝑘∗ − 1, where 𝑄 − 𝐸𝑥,𝑘 − {𝑥} = (𝑉 (𝑄) \ {𝑥}, 𝐸 (𝑄) \ 𝐸𝑥,𝑘 ). Thus,
(𝑄 − 𝐸𝑥,𝑘 − {𝑥}) ⊆ 𝐶𝑘

∗−1
. Since 𝑢0 ∈ 𝑄 , we have 𝑢0 ∈ 𝐶𝑘

∗−1 (𝐺),
i.e., 𝑘′ = 𝑘∗−1, thus 𝑘∗−𝑘′ = 1, which contradicts with 𝑘∗−𝑘′ > 1.

The theorem is proved.

Proof of Theorem 3.1:We denote 𝐺∗ as the graph after leading

𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 , and 𝐺 ′ as the graph after anchoring 𝑥 , i.e., setting

𝑑𝑒𝑔(𝑥) = +∞ but not inserting edges. 1) Since the impact of an-

choring 𝑥 must cover the effect of leading 𝑐𝑜𝑟𝑒 (𝑥) → 𝑘 , we can get

𝐹 (𝑥, 𝑘) ⊆ 𝐼 (𝑥, +∞). 2) We then prove that 𝐼𝑘 (𝑥, +∞) ∩ 𝐹 (𝑥, 𝑘) = ∅.
Since ∀𝑣 ∈ 𝐼𝑘 (𝑥, +∞), we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺) ≥ 𝑘 . While ∀𝑣 ∈ 𝐹 (𝑥, 𝑘),
𝑐𝑜𝑟𝑒 (𝑣,𝐺) ≤ 𝑘 − 1. So, we have 𝐼𝑘 (𝑥, +∞) ∩ 𝐹 (𝑥, 𝑘) = ∅. 3) We then

prove 𝐼 (𝑥, +∞)\ 𝐼𝑘 (𝑥, +∞) ⊆ 𝐹 (𝑥, 𝑘). ∀𝑣 ∈ 𝐼 (𝑥, +∞)\ 𝐼𝑘 (𝑥, +∞),
we prove that 𝑣 ∈ 𝐹 (𝑥, 𝑘), i.e. 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1. For
∀𝑣 ∈ 𝐼 (𝑥, +∞) \𝐼𝑘 (𝑥, +∞), 𝑐𝑜𝑟𝑒 (𝑣,𝐺 ′) = 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1. We de-

note 𝐼=
𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, +∞) as the number of followers whose core-

ness is equal to 𝑐𝑜𝑟𝑒 (𝑣,𝐺) before anchoring 𝑥 . Then, |𝑛𝑏𝑟 (𝑣) ∩
𝐶𝑐𝑜𝑟𝑒 (𝑣,𝐺 )+1 (𝐺) | + |𝑛𝑏𝑟 (𝑣) ∩ 𝐼=

𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, +∞)| ≥ 𝑐𝑜𝑟𝑒 (𝑣,𝐺 ′) =

𝑐𝑜𝑟𝑒 (𝑣,𝐺)+1. The equation holds because 𝑣 must have 𝑐𝑜𝑟𝑒 (𝑣,𝐺)+1
neighbors in 𝐶𝑐𝑜𝑟𝑒 (𝑣,𝐺 )+1 (𝐺 ′). We set 𝐹=

𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, 𝑘) as the ver-
tices whose coreness is equal to 𝑐𝑜𝑟𝑒 (𝑣,𝐺) among 𝐹 (𝑥, 𝑘). Then
it is easy to get 𝐹=

𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, 𝑘) = 𝐼=
𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, +∞), so we have

|𝑛𝑏𝑟 (𝑣)∩𝐶𝑐𝑜𝑟𝑒 (𝑣,𝐺 )+1 (𝐺) | + |𝑛𝑏𝑟 (𝑣)∩𝐹=
𝑐𝑜𝑟𝑒 (𝑣,𝐺 ) (𝑥, 𝑘) | ≥ 𝑐𝑜𝑟𝑒 (𝑣,𝐺

′)
= 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1. Therefore 𝑣 also has 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1 neighbors in
𝐶𝑐𝑜𝑟𝑒 (𝑣,𝐺 )+1 (𝐺∗), so 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) ≥ 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1. Based on the

Lemma A.1, we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) ≤ 𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1, so 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) =
𝑐𝑜𝑟𝑒 (𝑣,𝐺) + 1. Therefore, we have 𝐼 (𝑥, +∞)\ 𝐼𝑘 (𝑥, +∞) ⊆ 𝐹 (𝑥, 𝑘).

Combining the above three parts, the theorem is proved.

Proof of Theorem 3.4: The proof of this Theorem can be easily

extended from Theorem 4.14 in [21], so we will not explain it in

detail.

Proof of Theorem 3.5: Let 𝐾 = 𝑐𝑜𝑟𝑒 (𝑣,𝐺) and we divide 𝑛𝑏𝑟 (𝑣)
into three sets: 𝑃𝑣 = {𝑤 |𝑤 ∈ 𝑛𝑏𝑟 (𝑣) ∧ 𝑐𝑜𝑟𝑒 (𝑤) < 𝐾};𝑄𝑣 = {𝑤 |𝑤 ∈
𝑛𝑏𝑟 (𝑣) ∧ 𝐾 = 𝑐𝑜𝑟𝑒 (𝑤) ∧ 𝑙𝑎𝑦𝑒𝑟 (𝑣) > 𝑙𝑎𝑦𝑒𝑟 (𝑤)}; 𝑁𝑣 = {𝑤 |𝑤 ∈
𝑛𝑏𝑟 (𝑣) ∧𝑤 ∉ 𝑃𝑣 ∪𝑄𝑣}. (1) If ∃𝑥 ∈ G(𝑢), 𝑥 ∈ 𝑃𝑣 ∪𝑄𝑣 , then 𝑥 { 𝑣

is already an upstair path. (2) If there is no case (1) and ∃𝑥 ∈ G(𝑢),
𝑥 ∈ 𝑁𝑣 , we set the graph after promoting G(𝑢) as𝐺G(𝑢 ) . According
to the core decomposition, 𝑐𝑜𝑟𝑒 (𝑣,𝐺G(𝑢 ) ) = 𝐾 because vertices in

G(𝑢) is always deleted earlier in core decomposition and does not

affect the deletion order of 𝑣 . So 𝑣 is not a follower of G(𝑢), which
contradicts that 𝑣 is a follower. (3) If ∀𝑥 ∈ G(𝑢), 𝑥 ∉ 𝑃𝑣 ∪ 𝑄𝑣 ∪
𝑁𝑣 , 𝑣 must have a neighbor 𝑣0 ∈ 𝑄𝑣 ∩ 𝐶𝐾+1 (𝐺G(𝑢 ) ); otherwise
𝑐𝑜𝑟𝑒 (𝑣,𝐺G(𝑢 ) ) = 𝐾 same as the case (2). So if 𝑣𝑖 want to be a

follower ofG(𝑢), 𝑣𝑖 must have a neighbor 𝑣𝑖+1 ∈ 𝑄𝑣𝑖∩𝐶𝐾+1 (𝐺G(𝑢 ) )
or 𝑣𝑖+1 ∈ G(𝑢). Recursively, we can get that there exists a path

(𝑥, ..., 𝑣) is an upstair path, i.e., ∃𝑥 ∈ G(𝑢), 𝑥 { 𝑣 . The theorem is

proved.

Proof of Theorem 4.1: The proof of this Theorem can be easily

extended from Theorem 4.15 in [21], so we will not explain it in

detail.

Proof of Theorem4.2: First, the time complexity of 𝐹𝑖𝑛𝑑𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 (𝑣)
is 𝑂 (𝑚) as edge traversal occurs at most three times, we will ex-

plain this in detail in Appendix B.2. So the time complexity of

Line 6 is 𝑂 (𝑏 · 𝑛 ·𝑚). Secondly, when calculating the 𝐹 (𝑣, 𝑘), we
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only need to traverse 𝐼 (𝑣, +∞) once to get all 𝐹 (𝑣, 𝑘) for each

𝑘 ∈ 𝐾𝑟𝑎𝑛𝑔𝑒 (𝑣), so the time complexity of Line 8 is 𝑂 (𝑏 · 𝑛 ·
|𝐼 (𝑣, +∞)|) < 𝑂 (𝑏 · 𝑛 · 𝑛). Thirdly, the time complexity of Line

9 is𝑂 (𝑏 ·𝑘𝑚𝑎𝑥
∑
𝑣∈𝑉 (𝐺 ) 𝑛𝑏𝑟 (𝑣)) = 𝑂 (𝑏 ·𝑘𝑚𝑎𝑥 ·𝑚). Combined with

the above analysis, the time complexity is 𝑂 (𝑏 · 𝑛 ·𝑚).
Proof of Theorem4.4: Let𝑘′ = 𝑐𝑜𝑟𝑒∗ (𝑣)+1 , if𝑑𝑒𝑔(𝑣,𝐶𝑘 ′ (𝐺G(𝑢 ) ) <
𝑘′, we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺G(𝑢 ) ) ≤ 𝑘′ − 1. We will prove 𝑑+ (𝑣) com-

putes the upper bound of 𝑑𝑒𝑔(𝑣,𝐶𝑘 ′ (𝐺G(𝑢 ) ). We classify all the

𝑤 = 𝑛𝑏𝑟 (𝑣) ∧𝑤 ∉ G(𝑢) into different sets. 𝑆 = {𝑤 |𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) >
0 ∧ 𝑐𝑜𝑟𝑒∗ (𝑤) ≥ 𝑐𝑜𝑟𝑒∗ (𝑣) + 1} are considered in 𝑑+𝑠 (𝑣) unless they
are never pushed into 𝐻 . 𝑈 = {𝑤 |𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) = 0 ∧ 𝑐𝑜𝑟𝑒 (𝑤) =
𝑐𝑜𝑟𝑒∗ (𝑣)} are considered in 𝑑+𝑢 (𝑣) unless they are never pushed into
𝐻 . 𝑅 = {𝑤 |𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) > 0 ∧ 𝑐𝑜𝑟𝑒∗ (𝑤) = 𝑐𝑜𝑟𝑒∗ (𝑣)} are considered
in 𝑑+𝑟 (𝑣) unless they are never pushed into 𝐻 . 𝑃 = {𝑤 |𝑐𝑜𝑟𝑒 (𝑤) ≥
𝑐𝑜𝑟𝑒∗ (𝑣) + 1 ∧ 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) = 0}. Then 𝑃 ∪ {𝑤 |𝑤 ∈ 𝑛𝑏𝑟 (𝑢)∧ 𝑤 ∈
G(𝑢)} are considered in𝑑> (𝑣).𝑁1 = {𝑤 |𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) = 0∧𝑐𝑜𝑟𝑒 (𝑤) <
𝑐𝑜𝑟𝑒∗ (𝑣)} and 𝑁2 = {𝑤 |𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤) > 0 ∧ 𝑐𝑜𝑟𝑒∗ (𝑤) < 𝑐𝑜𝑟𝑒∗ (𝑣)}
can not contribute to the 𝑑𝑒𝑔(𝑣,𝐶𝑘 ′ (𝐺G(𝑢 ) ). So 𝑑+ (𝑣) is the upper
bound of 𝑑𝑒𝑔(𝑣,𝐶𝑘 ′ (𝐺G(𝑢 ) ). Thus, if 𝑑+ (𝑣) < 𝑘′, 𝑐𝑜𝑟𝑒 (𝑣,𝐺G(𝑢 ) ) ≤
𝑐𝑜𝑟𝑒∗ (𝑣). The theorem is proved.

Proof of Theorem 4.6: The time complexity of the Algorithm 2

is bounded by GroupReduction, GroupExpansion, and GroupGain.

In the worst case, GroupReduction invokes GroupShrink for each

vertex, leading to a time complexity is 𝑂 (∑𝑣 𝑑𝑒𝑔(𝑣)) = 𝑂 (𝑚). The
worst time complexity of GroupExpansion is 𝑂 (𝑛 · 𝑘𝑚𝑎𝑥 +𝑚). It
is bounded by the maximum number of vertex visits and updates

to 𝑒𝑟 (.) and 𝑒𝑐 (.), as detailed in Appendix B.5. Since the number

of times a vertex 𝑢 is put into 𝐻 is bounded and does not exceed

𝑐𝑜𝑟𝑒 (𝑢), the worst time complexity of GroupGain is 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥 ).
Since the above three algorithms are called at most 𝑏 · 𝑛 times, the

time complexity of Algorithm 2 is 𝑂 (𝑏 · 𝑛 ·𝑚 · 𝑘𝑚𝑎𝑥 ).
Proof of Theorem 4.7: Since LGB algorithm calculates 𝐿𝑆 and

𝐺𝑆 at most 𝑏 times in the worst case, the worst time complexity

should be the time complexity of calculating 𝐿𝑆 and 𝐺𝑆 , which are

𝑂 (𝑛 ·𝑚) and𝑂 (𝑛 ·𝑚 ·𝑘𝑚𝑎𝑥 ) respectively. Therefore, the final overall
complexity will not exceed 𝑂 (𝑏 · 𝑛 ·𝑚 · 𝑘𝑚𝑎𝑥 ).

B Detailed Implementation of the Algorithm
In this section, we provide detailed pseudocode for the previous

algorithms.

B.1 Layer Decomposition Algorithm
We design the layer decomposition algorithm to get the layer num-

ber of vertices as shown in Algorithm 4.

Algorithm 4: Layer Decomposition (𝐺,𝑘𝑚𝑎𝑥 )

Input :𝐺 = (𝑉 , 𝐸), 𝑘𝑚𝑎𝑥 : max coreness for 𝑣 ∈ 𝐺
Output :𝑙𝑎𝑦𝑒𝑟 (.) for ∀𝑣 ∈ 𝐺

1 for 𝑘 from 1 to 𝑘𝑚𝑎𝑥 do
2 𝑄 ← 𝐶𝑘 (𝐺),𝑖 ← 1, 𝑃 = {𝑣 |𝑑𝑒𝑔(𝑣,𝑄) < 𝑘 + 1 ∧ 𝑣 ∈ 𝑄};
3 while 𝑃 ≠ ∅ do
4 foreach 𝑣 ∈ 𝑃 do 𝑙𝑎𝑦𝑒𝑟 (𝑣) = 𝑖;
5 𝑖 + +, 𝑄 = 𝑄 \ 𝑃 , 𝑃 = {𝑣 |𝑑𝑒𝑔(𝑣,𝑄) < 𝑘 + 1 ∧ 𝑣 ∈ 𝑄};

6 return 𝑙𝑎𝑦𝑒𝑟 (.);

B.2 FindFollowers Algorithm

Algorithm 5: Shrink (𝑢)

Input : the vertex 𝑢 for degree check

1 foreach survived 𝑣 ∈ 𝑛𝑏𝑟 (𝑢) ∧ 𝑣 ≠ 𝑥 ∧𝑐𝑜𝑟𝑒 (𝑣) = 𝑐𝑜𝑟𝑒 (𝑢) do
2 𝑑+ (𝑣) = 𝑑+ (𝑣) − 1;
3 if 𝑑+ (𝑣) < 𝑐𝑜𝑟𝑒 (𝑣) + 1 then 𝑇 ← 𝑣 ;

4 foreach 𝑣 ∈ 𝑇 do
5 𝑣 is set discarded, Shrink(𝑣);

Algorithm 6: FindFollowers (𝑥,𝐺)
Input :A graph 𝐺 = (𝑉 , 𝐸), the leader 𝑥
Output : 𝐼 (𝑥, +∞)

1 𝐻 ← ∅, 𝑥 is set survived;
2 foreach 𝑣 ∈ 𝑛𝑏𝑟 (𝑥) do
3 if 𝑐𝑜𝑟𝑒 (𝑣) > 𝑐𝑜𝑟𝑒 (𝑥) or 𝑣 ∈ 𝑐𝑒𝑙> (𝑢) then
4 𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑣), 𝑙𝑎𝑦𝑒𝑟 (𝑣)}, 𝑣});

5 while 𝐻 ≠ ∅ do
6 𝑢 ← 𝐻.𝑝𝑜𝑝 (), Compute 𝑑+ (𝑢);
7 if 𝑑+ (𝑢) ≥ 𝑐𝑜𝑟𝑒 (𝑢) + 1 then
8 𝑢 is set survived;
9 foreach 𝑣 ∈ 𝑛𝑏𝑟 (𝑢) do
10 if 𝑣 ∈ 𝑐𝑒𝑙> (𝑢) ∧ 𝑣 ∉ 𝐻 then
11 𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑣), 𝑙𝑎𝑦𝑒𝑟 (𝑣)}, 𝑣});

12 else 𝑢 is set discarded, Shrink(𝑢) ;

13 return survived vertices \{𝑥};

The cascade update effect is simulated using Algorithm 5. The

FindFollowers process is shown in Algorithm 6. The time com-

plexity of Algorithm 6 is 𝑂 (𝑚), as edge traversal occurs at most

three times during degree checking, pushing neighbors into 𝐻 , and

invoking the Shrink function.

B.3 GroupReduction Algorithm
GroupReduction is shown in Algorithm 7. The 𝑔𝑟 (.) and 𝑔𝑐 (.)
values are initially calculated for each vertex 𝑢 (Line 1), and then it

is assessed whether𝑢 will be removed from G(𝑣) according to 𝑔𝑣 (.)
(Lines 2-5). If 𝑢 will be removed, the sub-function GroupShrink
(Lines 6-9) is called. This function traverses the 𝑛𝑏𝑟 (𝑢) that are still
in G(𝑣), updates the corresponding 𝑔𝑟 (.) and 𝑔𝑐 (.), and determines

whether these vertices should be removed from the G(𝑣).

B.4 GroupExpansion Algorithm
The Algorithm 8 illustrates the process of GroupExpansion. Ini-
tially, it computes 𝑒𝑟 (.) and 𝑒𝑐 (.) for the vertices within one-hop

of G(𝑣) and uses array visited(.) to mark whether they have been

visited (Line 4). If 𝑒𝑣 (.) ≥ 0, the vertex is added to G(𝑣) and the

algorithm calls the subfunction GroupAmplify to reevaluate the
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Algorithm 7: GroupReduction (𝐺 , G(𝑣))
Input :A graph 𝐺 = (𝑉 , 𝐸), a group G(𝑣) centered on 𝑣

1 foreach 𝑢 ∈ G(𝑣) do compute 𝑔𝑟 (𝑢) and 𝑔𝑐 (𝑢) ;
2 foreach 𝑢 ∈ G(𝑣) do
3 if 𝑔𝑐 (𝑢) − 𝑔𝑟 (𝑢) < 0 then
4 Remove 𝑢 from G(𝑣);
5 GroupShrink(𝑢,𝑔𝑟 (.), 𝑔𝑐 (.));

6 Procedure GroupShrink(𝑢, 𝑔𝑟 (.), 𝑔𝑐 (.))
7 foreach𝑤 ∈ 𝑛𝑏𝑟 (𝑢) ∧𝑤 ∈ G(𝑣) do
8 𝑔𝑟 (𝑤)+ = 1, 𝑔𝑐 (𝑤)− = 1;

9 if 𝑔𝑐 (𝑤) − 𝑔𝑟 (𝑤) < 0 then Similar to Lines 4-5 ;

Algorithm 8: GroupExpansion (𝐺 , G(𝑣))
Input :A graph 𝐺 = (𝑉 , 𝐸), a group G(𝑣), 𝑔𝑟 (.)

1 visit(.) = 0, 𝐾𝐸 = 𝑐𝑜𝑟𝑒 (𝑣) + 1;
2 foreach 𝑢 ∈ G(𝑣) do
3 foreach𝑤 ∈ 𝑛𝑏𝑟 (𝑢) ∧ 𝑐𝑜𝑟𝑒 (𝑤) < 𝐾𝐸 ∧ 𝑣𝑖𝑠𝑖𝑡 (𝑤) = 0 do
4 compute 𝑒𝑟 (𝑤) and 𝑒𝑐 (𝑤), visit(𝑤 )=1;

5 if 𝑒𝑐 (𝑤) − 𝑒𝑟 (𝑤) ≥ 0 then
6 Add𝑤 to G(𝑣);
7 foreach 𝑥 ∈ 𝑛𝑏𝑟 (𝑤) ∧ 𝑥 ∈ G(𝑣) ∧ 𝑔𝑟 (𝑥) > 0 do
8 𝑔𝑟 (𝑥)− = 1;

9 if 𝑔𝑟 (𝑥) = 0 then
10 foreach 𝑞 ∈ 𝑛𝑏𝑟 (𝑥)∧ visit(𝑞)=1 do
11 𝑒𝑐 (𝑞)− = 1;

12 GroupAmplify(𝑤, 𝑒𝑟 (.), 𝑒𝑐 (.));

13 Procedure GroupAmplify(𝑤 , 𝑒𝑟 (.), 𝑒𝑐 (.))
14 foreach 𝑢 ∈ 𝑛𝑏𝑟 (𝑤) ∧ 𝑢 ∉ G(𝑣) ∧ 𝑣𝑖𝑠𝑖𝑡 (𝑢) = 1 do
15 𝑒𝑟 (𝑢)− = 1,𝑒𝑐 (𝑢)+ = 1;

16 if 𝑒𝑐 (𝑢) − 𝑒𝑟 (𝑢) ≥ 0 then Similar to lines 6-12 ;

vertices that have been visited but do not satisfy 𝑒𝑣 (.) ≥ 0 (Lines

5-12). If they currently satisfy 𝑒𝑣 ≥ 0, they are added to the group

(Lines 13-16). And we need to update the 𝑔𝑟 (.) of the vertices in the

G(𝑣) (Lines 8-11), because only the vertices in G(𝑣) with 𝑔𝑟 (.) > 0

can participate in the calculation of 𝑒𝑐 (.).
Complexity Analysis. In Algorithm 8, since each vertex will

only be calculated once 𝑒𝑐 (.) and 𝑒𝑟 (.), GroupAmplify will be

called 𝑛 times in the worst case, and Line 15 will only happen

𝑂 (∑𝑣∈𝑉 (𝐺 ) 𝑑𝑒𝑔(𝑣)) = 𝑂 (𝑚) times in the worst case. Line 8 can

be called at most (including in GroupAmplify) 𝑂 (𝑛 · 𝑔𝑟𝑚𝑎𝑥 ) <

𝑂 (𝑛 · 𝑘𝑚𝑎𝑥 ) times Where 𝑔𝑟𝑚𝑎𝑥 is the possible maximum value of

𝑔𝑟 (.). The case of 𝑔𝑟 (𝑥) = 0 happens at most once for each vertex,

so the time complexity of Line 11 is also 𝑂 (𝑚). Therefore, the final
time complexity is 𝑂 (𝑚 + 𝑛 · 𝑘𝑚𝑎𝑥 ).

B.5 GroupGain Algorithm
The Algorithm 10 details the pseudocode for computing 𝐺𝑔𝑎𝑖𝑛(.),
where vis records survive vertices in the current hierarchy 𝑘 , and
𝑒𝑝𝑜𝑐ℎ_𝑘 denotes the coreness value of the ongoing hierarchy (Line

1). As 𝑒𝑝𝑜𝑐ℎ_𝑘 increases, vertices in vis will be placed in 𝐻 (Lines

3-4) and marked as reexplored. If the current head of the queue is

in G(𝑢), it expands the upstairs path outwards (Lines 11-16). Oth-

erwise, calculate 𝑑+ (𝑣), and begin the degree check. If 𝑣 successes

(Lines 18-23), the state will be modified and expanded outwards

and 𝑣 will be added into 𝑣𝑖𝑠 . When the coreness hierarchy increases,

𝑣 will continue to be added to 𝐻 and expanded. If the degree check

fails (Line 24), 𝑣 will be marked as discarded, invoking the GShrink
function. Distinct from Shrink, GShrink incorporates the effect of

Survive(.), determining whether the coreness of 𝑣 cannot increase

further. Finally, we find 𝐹𝐺 (G(𝑢)) based on the value of 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (.)
and calculate the 𝐺𝑔𝑎𝑖𝑛(G(𝑢)) (Lines 25-27). Since the number of

times a vertex is put into𝐻 is bounded and does not exceed 𝑐𝑜𝑟𝑒 (𝑢),
the time complexity is 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥 ).

Algorithm 9: GShrink (𝑣 , G(𝑢))
Input : the vertex 𝑣 for degree check, group G(𝑢)

1 foreach survived𝑤 ∈ 𝑛𝑏𝑟 (𝑣) with𝑤 ∉ G(𝑢) do
2 if 𝑐𝑜𝑟𝑒∗ (𝑣) + 1 = 𝑐𝑜𝑟𝑒∗ (𝑤) then
3 𝑑+ (𝑤) = 𝑑+ (𝑤) − 1;
4 if 𝑑+ (𝑤) < 𝑐𝑜𝑟𝑒∗ (𝑤) then
5 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑤)− = 1, 𝑇 ← 𝑤 ;

6 foreach𝑤 ∈ 𝑇 do
7 𝑤 is set discarded, remove𝑤 from vis;
8 GShrink(𝑤 , G(𝑢));

C Additional Examples
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Figure 9: A Toy Example. The coreness value of each vertex
is displayed in the upper left corner.

Example C.1. Figure 9 depicts a graph containing 7 vertices and

edges. When 𝑏 = 2, we can add 𝐷 = {(0, 2), (0, 3)} such that

𝑔(𝐷,𝐺) = 3, where vertex 0 is elevated from 2-core to 4-core, and

vertex 1 is increased from 3-core to 4-core.

Example C.2. In Figure 10, 𝑙𝑎𝑦𝑒𝑟 (1) = 𝑙𝑎𝑦𝑒𝑟 (5) = 1, and 𝑙𝑎𝑦𝑒𝑟 (2) =
𝑙𝑎𝑦𝑒𝑟 (3) = 𝑙𝑎𝑦𝑒𝑟 (4) = 2. If we lead vertex 1 to 3-core, then paths

1 { 3 and 1 { 2 can serve as upstair paths because 𝑐𝑜𝑟𝑒 (1) =
𝑐𝑜𝑟𝑒 (2) = 𝑐𝑜𝑟𝑒 (3) = 1, and 𝑙𝑎𝑦𝑒𝑟 (2) = 𝑙𝑎𝑦𝑒𝑟 (3) > 𝑙𝑎𝑦𝑒𝑟 (1).

Example C.3. In Figure 2, we traverse the neighbors within the

one-hop range of G(10) and obtain the set {2, 3, 11}. Then, we
calculate 𝑒𝑟 (2) = 6 − |{4, 5, 6}| = 3 and 𝑒𝑐 (2) = |{4, 5, 6}| = 3, thus

𝑒𝑣 (2) = 0. Similarly, we get 𝑒𝑣 (3) = 0, 𝑒𝑣 (11) = −5. Therefore, 2
and 3 are added to G(10) during the GroupExpansion process.
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Algorithm 10: GroupGain (𝐺 , G(𝑢))
Input :A graph 𝐺 = (𝑉 , 𝐸), a group G(𝑢)
Output :𝐺𝑔𝑎𝑖𝑛: the coreness gain of G(𝑢)

1 H = ∅, 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 = ∅, 𝑣𝑖𝑠 = ∅, 𝐹𝐺 = ∅ ;
2 𝐺𝑔𝑎𝑖𝑛 = 0, 𝐾 ← 𝑐𝑜𝑟𝑒 (𝑢,𝐺) + 1, 𝑒𝑝𝑜𝑐ℎ_𝑘 ← 0 ;

3 foreach 𝑣 ∈ G(𝑢) do
4 𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑣), 𝑙𝑎𝑦𝑒𝑟 (𝑣)}, 𝑣});
5 while 𝐻 ≠ ∅ do
6 𝑣𝑘 ← 𝐻.𝑡𝑜𝑝 () .𝑘𝑒𝑦;
7 if 𝑣𝑘 ≠ 𝑒𝑝𝑜𝑐ℎ_𝑘 then
8 push 𝑣𝑖𝑠 into 𝐻 , 𝑣𝑖𝑠 ← ∅, 𝑒𝑝𝑜𝑐ℎ_𝑘 = 𝑣𝑘 ;

9 set vertices in 𝑣𝑖𝑠 as reexplored;

10 𝑣 ← 𝐻.𝑡𝑜𝑝 () .𝑣𝑎𝑙𝑢𝑒 , 𝐻.𝑝𝑜𝑝 ();
11 if 𝑣 ∈ G(𝑢) then
12 𝑣 is set survived, Insert (𝑣, 𝐾 − 𝑐𝑜𝑟𝑒 (𝑣)) into 𝐹𝐺 ;
13 foreach𝑤 ∈ 𝑛𝑏𝑟 (𝑣) ∧𝑤 ∉ 𝐻 ∧𝑤 is unexplored do
14 if 𝑤 ∈ 𝑐𝑒𝑙> (𝑣) or 𝐾 > 𝑐𝑜𝑟𝑒 (𝑤) > 𝑐𝑜𝑟𝑒 (𝑣) then
15 𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑤), 𝑙𝑎𝑦𝑒𝑟 (𝑤)},𝑤});

16 continue;

17 compute 𝑑+ (𝑣);
18 if 𝑑+ (𝑣) ≥ 𝑐𝑜𝑟𝑒∗ (𝑣) + 1 then
19 foreach𝑤 ∈ 𝑛𝑏𝑟 (𝑣)∧𝑤 is unexplored ∧𝑤 ∉ 𝐻 do
20 if 𝑣 is unexplored ∧𝑤 ∈ 𝑐𝑒𝑙> (𝑣) then
21 𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑤), 𝑙𝑎𝑦𝑒𝑟 (𝑤)},𝑤});
22 if 𝑣 is survived ∧𝑐𝑜𝑟𝑒∗ (𝑣) = 𝑐𝑜𝑟𝑒 (𝑤) then

𝐻.𝑝𝑢𝑠ℎ({{𝑐𝑜𝑟𝑒 (𝑤), 𝑙𝑎𝑦𝑒𝑟 (𝑤)},𝑤}) ;
23 𝑣 is set survived, Survive(𝑣)++, Insert 𝑣 into vis;

24 else 𝑣 is set discarded, GShrink(𝑣 , G(𝑢)) ;
25 foreach 𝑣 ∈ 𝑉 (𝐺) ∧ 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑣) > 0 do
26 Insert (𝑣, 𝑆𝑢𝑟𝑣𝑖𝑣𝑒 (𝑣)) into 𝐹𝐺 ;
27 𝐺𝑔𝑎𝑖𝑛 =

∑
(𝑣,𝑘 ) ∈𝐹𝐺 (G(𝑢 ) ) 𝑘 ;

28 return 𝐺𝑔𝑎𝑖𝑛;
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Figure 10: An Example. The coreness value of each vertex is
displayed in the upper left corner.

D Related Work
The 𝑘-core model [3, 28] serves as a crucial model in understanding

cohesive subgraphs [7, 9, 35], with practical applications such as

community discovery [11–13, 15], influence propagation [17, 20,

24], protein structure analysis [2], social network analysis [5, 12],

and graph visualization [1]. The 𝑘-core model can evaluate the

user engagement of the network [4, 25, 34]. The size of 𝑘-core

is positively correlated with user engagement, and Linghu et al.

[21, 22] further explored that coreness is better than 𝑘-core in

reflecting user engagement. Therefore, it is necessary to improve

network average user engagement from coreness improvement.

Bhawalkar et al. [4] introduced the anchor𝑘-core problem. Zhang

et al. [33] devised an onion-layer architecture for the anchor 𝑘-core

problem. Laishram et al. [18] addressed this problem through core

decomposition on the residual graph. Linghu et al. [21, 22] fur-

ther proposed the anchor coreness problem to explore methods for

enhancing global stability. Teng et al. [31] improved the anchor

coreness method and proposed an Advanced Greedy Approach.

Additionally, Zhang et al. [32] introduced dynamic graphs to assess

the importance of vertices. However, in practical scenarios, like in

social networks, such kind of vertex anchoring operation is hard

to realize, i.e., increasing the vertex degree to be positive infinity

without changing its connections to the other vertices is hard to

realize.

Zhou et al. [36] first introduced the 𝑘-core maximization prob-

lem, aimed at improving network stability through edge insertion.

Building upon this work, Zhou et al. [37] presented a vertex-based

greedy enumeration approach. Further advancements were made

by Sun et al. [30], which achieves faster performance through 𝑘-1-

shell division and conversion. Additionally, Do et al. [10] extended

the 𝑘-core maximization problem to hypergraphs. However, the

value 𝑘 is hard to determine, and improving only the vertices with

coreness 𝑘 − 1 can hardly reflect the overall coreness gain of the

graph. Therefore, we propose a new unexplored problem with prac-

tically significance: the BLCM problem, i.e., how to enhance the

engagement of nodes of all coreness as much as possible using a

limited edge insertion budget.

E Supplementary experiments
E.1 Ablation Experiments on GCGI
To assess the effectiveness of GroupExpansion and GroupReduc-

tion, we conducted experiments across 13 datasets with 𝑏 set to

50. The results are shown in Table 4. GCGI-R-E exhibits the poor-

est performance, often accompanied by longer time costs due to

the absence of group pruning. GCGI-E gets better coreness gain

than GCGI-R-E by removing vertices with poor performance in the

group. However, in rare cases, such as the youtube dataset, vertex

removal may lead to an inability to identify groups with satisfactory

performance, resulting in a decrease in effectiveness. GCGI-R leads

to a higher coreness gain than GCGI-R-E but is often accompanied

by increased time complexity. GCGI combines the GroupReduction

and GroupExpansion, which achieves higher coreness gain com-

pared to the other three algorithms while ensuring the time cost

of GCGI is not so long in most cases, making it the most suitable

option for practical applications.
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Table 4: Experiments on different variants of GCGI algorithms, 𝑏=50.

Dataset

Coreness Gain Time Cost (s)

GCGI-R-E GCGI-R GCGI-E GCGI GCGI-R-E GCGI-R GCGI-E GCGI

TC 310 356 387 394 5.28 5.13 13.39 16.26

PK 204 234 424 2020 88.98 307.14 150.32 194.84

EE 383 465 509 659 15.55 7.59 29.61 15.62

FB 547 853 976 1809 490.58 210.19 661.52 302.26

GW 639 941 1072 1525 204.01 114.44 414.37 187.30

DB 703 754 782 902 136.88 110.60 285.32 194.97

AZ 1297 1353 1531 1625 301.18 226.52 479.67 359.15

YT 742 564 1027 1086 629.32 168.18 1093.65 139.56
GG 1374 1601 1604 1730 962.54 760.83 2190.41 1698.55

LF 784 868 1202 1402 830.13 353.13 2195.20 405.44

PC 1431 1770 1638 2654 549418 7469.81 787888 7244.75
FS 808 3249 2822 4093 31545.2 800.25 4893.12 2284.88

LJ 3340 7042 4440 7612 86770.7 15138.2 224100 38818.4

LCGI GCGI LGB
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Figure 11: Vary 𝑏

E.2 Stability when Varying 𝑏
We conducted experiments to assess changes in coreness gain and

time cost on the Gowalla and Google datasets as 𝑏 increases from 5

to 50, whose results are shown in Figure 11. As depicted in Figures

11a and 11c, with the increase in 𝑏, coreness gain exhibits a grad-

ual upward trend across different algorithms. Moreover, it can be

observed from Figures 11b and 11d that the time cost also demon-

strates a slow upward trend, although this is not universally true.

Since the algorithm operates based on a greedy strategy, the limita-

tion imposed by 𝑏 may lead to varying greedy selection outcomes.

Consequently, in different algorithms, theremay be scenarios where

the time decreases even as 𝑏 increases.

In addition, it can be seen in Figure 11d that the running time

of LGB is smaller than that of LCGI, which is due to the combined

greedy strategy of LGB, leading to the decrease of running epochs.
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Figure 12: Distribution of followers on Coreness in Gowalla.
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Figure 13: A case-study on the soc-dolphins dataset.
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E.3 Comparison with other KM algorithms
In addition, we conduct further experiments to explore the coreness

distribution of followers in the KM and BLCM problems. We applied

the VEK and FASTCM+ algorithms with different 𝑘 values (VEK-

𝑘 and FASTCM+−𝑘 denote the set of the 𝑘) on Gowalla datasets

and compared them with LGB. The results are shown in Figure 12.

The followers of LGB are distributed among vertices with different

coreness, whereas VEK-𝑘 and FASTCM+−𝑘 are concentrated in the

vertex with coreness 𝑘 − 1. The diversity of followers in the BLCM

problem is more conducive to real-world scenarios and can better

enhance average user engagement.

E.4 Case Study
We conducted a case study on the soc-dolphins dataset [23], a

small real-world social network consisting of 62 vertices and 159

edges. Figure 13 illustrates the additional edges added by the LGB

algorithm with a budget of 𝑏 = 4. At this stage, the coreness gain

achieved is 8. Among them, the nodes "Bumper", "Mus", "Notch",

"Number1", "Shmuddel", and "Thumper" are updated from the 3-

core to the 4-core, while "TSN83" and "Zipfel" are updated from the

2-core to the 3-core.
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